Browse Source

fix and update

metya 7 năm trước cách đây
mục cha
commit
967eb6bdca
100 tập tin đã thay đổi với 352 bổ sung303 xóa
  1. BIN
      .RData
  2. 80 76
      Deep Learning in R.Rmd
  3. 61 223
      Deep_Learning_in_R.html
  4. 17 0
      Deep_Learning_in_R_cache/html/__packages
  5. BIN
      Deep_Learning_in_R_cache/html/require(keras)_4a95b8774714cd7667d4bbf8d95ef0d4.RData
  6. BIN
      Deep_Learning_in_R_cache/html/require(keras)_4a95b8774714cd7667d4bbf8d95ef0d4.rdb
  7. BIN
      Deep_Learning_in_R_cache/html/require(keras)_4a95b8774714cd7667d4bbf8d95ef0d4.rdx
  8. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-10_bb765d51318b911df473bfe27f9399a1.RData
  9. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-10_bb765d51318b911df473bfe27f9399a1.rdb
  10. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-10_bb765d51318b911df473bfe27f9399a1.rdx
  11. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-11_9bce284609cda3286ada25ec8cf29fe2.RData
  12. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-11_9bce284609cda3286ada25ec8cf29fe2.rdb
  13. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-11_9bce284609cda3286ada25ec8cf29fe2.rdx
  14. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-12_3821e394b95e072f935068414f88dd3e.RData
  15. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-12_3821e394b95e072f935068414f88dd3e.rdb
  16. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-12_3821e394b95e072f935068414f88dd3e.rdx
  17. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-13_1695239dde76f9f0869e351aae020883.RData
  18. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-13_1695239dde76f9f0869e351aae020883.rdb
  19. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-13_1695239dde76f9f0869e351aae020883.rdx
  20. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-14_fb13f2d336cd6cc0d5c30b9c4c1a4583.RData
  21. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-14_fb13f2d336cd6cc0d5c30b9c4c1a4583.rdb
  22. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-14_fb13f2d336cd6cc0d5c30b9c4c1a4583.rdx
  23. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-15_2802a50d8885003f9037f8c13e229397.RData
  24. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-15_2802a50d8885003f9037f8c13e229397.rdb
  25. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-15_2802a50d8885003f9037f8c13e229397.rdx
  26. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-16_e93bbac295d347948c437f6b8be85f59.RData
  27. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-16_e93bbac295d347948c437f6b8be85f59.rdb
  28. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-16_e93bbac295d347948c437f6b8be85f59.rdx
  29. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-17_fef6216cc3763052cf9c80149cfe7cc2.RData
  30. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-17_fef6216cc3763052cf9c80149cfe7cc2.rdb
  31. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-17_fef6216cc3763052cf9c80149cfe7cc2.rdx
  32. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-18_05ecc2868a72c07b0d5b8bc950b80d5d.RData
  33. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-18_05ecc2868a72c07b0d5b8bc950b80d5d.rdb
  34. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-18_05ecc2868a72c07b0d5b8bc950b80d5d.rdx
  35. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-19_b0e0fbe91d2b2969c3eee6f0aa64b6b7.RData
  36. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-19_b0e0fbe91d2b2969c3eee6f0aa64b6b7.rdb
  37. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-19_b0e0fbe91d2b2969c3eee6f0aa64b6b7.rdx
  38. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-20_f835d053d08f2c7ca2355b9bf5c78dca.RData
  39. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-20_f835d053d08f2c7ca2355b9bf5c78dca.rdb
  40. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-20_f835d053d08f2c7ca2355b9bf5c78dca.rdx
  41. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-21_8ca6fc5509dd2e438532bf7d3bace749.RData
  42. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-21_8ca6fc5509dd2e438532bf7d3bace749.rdb
  43. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-21_8ca6fc5509dd2e438532bf7d3bace749.rdx
  44. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-22_4d460e32dfe62e168283a1af95c38062.RData
  45. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-22_4d460e32dfe62e168283a1af95c38062.rdb
  46. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-22_4d460e32dfe62e168283a1af95c38062.rdx
  47. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-23_60c1a55fc84dc0dea24e0f4b711ee9e1.RData
  48. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-23_60c1a55fc84dc0dea24e0f4b711ee9e1.rdb
  49. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-23_60c1a55fc84dc0dea24e0f4b711ee9e1.rdx
  50. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-24_e0e68bc65e8be667289586ce24d9b2ff.RData
  51. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-24_e0e68bc65e8be667289586ce24d9b2ff.rdb
  52. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-24_e0e68bc65e8be667289586ce24d9b2ff.rdx
  53. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-25_55397e14a6ace60c79497409784306ca.RData
  54. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-25_55397e14a6ace60c79497409784306ca.rdb
  55. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-25_55397e14a6ace60c79497409784306ca.rdx
  56. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-26_093e583b095fe17ad0da67e72e154d27.RData
  57. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-26_093e583b095fe17ad0da67e72e154d27.rdb
  58. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-26_093e583b095fe17ad0da67e72e154d27.rdx
  59. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-27_5810f71bc44e68595d7bc2f162913ea4.RData
  60. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-27_5810f71bc44e68595d7bc2f162913ea4.rdb
  61. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-27_5810f71bc44e68595d7bc2f162913ea4.rdx
  62. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-28_375ad401cb5a8df0dfe4815fbbfc4692.RData
  63. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-28_375ad401cb5a8df0dfe4815fbbfc4692.rdb
  64. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-28_375ad401cb5a8df0dfe4815fbbfc4692.rdx
  65. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-29_9cd5192000319d370709958867a3892d.RData
  66. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-29_9cd5192000319d370709958867a3892d.rdb
  67. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-29_9cd5192000319d370709958867a3892d.rdx
  68. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-30_e73310f60fb9dd40c6b7e5fcedd76464.RData
  69. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-30_e73310f60fb9dd40c6b7e5fcedd76464.rdb
  70. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-30_e73310f60fb9dd40c6b7e5fcedd76464.rdx
  71. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-31_32c2f9b4b33a2fd3c1be561f6a1ee593.RData
  72. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-31_32c2f9b4b33a2fd3c1be561f6a1ee593.rdb
  73. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-31_32c2f9b4b33a2fd3c1be561f6a1ee593.rdx
  74. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-32_440f1003e124cde39388d86af9f2524d.RData
  75. 0 0
      Deep_Learning_in_R_cache/html/unnamed-chunk-32_440f1003e124cde39388d86af9f2524d.rdb
  76. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-32_440f1003e124cde39388d86af9f2524d.rdx
  77. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-3_0e9b76ed9c5f2d49811a44b951fdecb1.RData
  78. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-3_0e9b76ed9c5f2d49811a44b951fdecb1.rdb
  79. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-3_0e9b76ed9c5f2d49811a44b951fdecb1.rdx
  80. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-4_6a8f92a2a39c40f5fc18dd3b917a541a.RData
  81. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-4_6a8f92a2a39c40f5fc18dd3b917a541a.rdb
  82. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-4_6a8f92a2a39c40f5fc18dd3b917a541a.rdx
  83. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-5_570a7c2f944a761a305df3dcef4571da.RData
  84. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-5_570a7c2f944a761a305df3dcef4571da.rdb
  85. BIN
      Deep_Learning_in_R_cache/html/unnamed-chunk-5_570a7c2f944a761a305df3dcef4571da.rdx
  86. 14 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-10-1.svg
  87. 1 1
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-13-1.svg
  88. 38 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-14-1.svg
  89. 38 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-16-1.svg
  90. BIN
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-17-1.png
  91. 26 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-17-1.svg
  92. 26 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-18-1.svg
  93. 26 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-20-1.svg
  94. BIN
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-28-1.png
  95. BIN
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-29-1.png
  96. BIN
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-30-1.png
  97. BIN
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-31-1.png
  98. BIN
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-32-1.png
  99. 2 3
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-7-1.svg
  100. 23 0
      Deep_Learning_in_R_files/figure-html/unnamed-chunk-8-1.svg

BIN
.RData


+ 80 - 76
Deep Learning in R.Rmd

@@ -1,6 +1,6 @@
 ---
 title: "Deep Learning in R"
-subtitle: "\u2591 <br/>Обзор фреймворков с примерами"  
+subtitle: "\u2591<br/>Обзор фреймворков с примерами"  
 author: "metya"
 date: '`r Sys.Date()`'
 output:
@@ -32,7 +32,7 @@ background-color: #8d6e63
 
 #Disclaimer
 
-Цель доклада не дать понимаение что такое глубокое обучение и детально разобрать как работать с ним и обучать современные модели, а скорее показать как просто можно начать тем, кто давно хотел и чесались руки, но все было никак не взяться
+Цель доклада не дать понимание, что такое глубокое обучение и детально разобрать как работать с ним и обучать современные модели, а скорее показать, как просто можно начать тем, кто давно хотел и чесались руки, но все было никак не взяться
 
 ---
 # Deep Learning
@@ -130,11 +130,11 @@ https://tensorflow.rstudio.com/
 
 - Имеет самый большой спрос у продакшн систем
 
-- Имеет API во множестве языков
+- Имеет API во множество языков
 
 - Имеет статический граф вычислений, что бывает неудобно, зато оптимизированно
 
-- Примерно с лета имеет фичу **eager execution**, который почти нивелирует это неудобство. Но почти не считается
+- Примерно с лета имеет фичу **eager execution**, которая почти нивелирует это неудобство. Но почти не считается
 
 - Доступен в R как самостоятельно, так и как бэкэнд Keras
 
@@ -174,9 +174,9 @@ https://tensorflow.rstudio.com/keras/
 - Высокоуровневый фреймворк над другими такими бэкэндами как Theano, CNTK, Tensorflow, и еще некоторые на подходе
 - Делается Франсуа Шолле, который написал книгу Deep Learning in R
 - Очень простой код
-- Один и тот же код рабоает на разных бэкендах, что теоретически может быть полезно (нет)
-- Есть очень много блоков нейросетей из современных SOTA работ
-- Нивелирует боль статических вычислительных графов
+- Один и тот же код работает на разных бэкендах, что теоретически может быть полезно (нет)
+- Есть очень много блоков нейросетей из современных State-of-the-Art работ
+- Нивелирует боль статических вычислительных графов (не совсем)
 - Уже давно дефолтом поставляется вместе с TensorFlow как его часть, но можно использовать и отдельно
 
 
@@ -245,31 +245,32 @@ make rpkg
 ---
 
 ## Загрузка и обработка данных
-```{r eval=FALSE}
-df <- read_csv("data.csv")
-set.seed(100)
+```{r eval=TRUE, cache=TRUE}
+df <- readRDS('data.rds')
+set.seed(100) #set seed to reproduce results
 ```
 
-```{r}
+```{r eval=TRUE, cache=TRUE}
 #transform and split train on x and y
-train_ind <- sample(1:77, 60)
-x_train <- as.matrix(df[train_ind, 2:8])
-y_train <- unlist(df[train_ind, 9])
-x_val <- as.matrix(df[-train_ind, 2:8])
-y_val <- unlist(df[-train_ind, 9])
+train_ind <- sample(1:77, 60) # random split data
+x_train <- as.matrix(df[train_ind, 2:8]) # train data
+y_train <- unlist(df[train_ind, 9]) # train labels
+x_val <- as.matrix(df[-train_ind, 2:8]) # test validation data
+y_val <- unlist(df[-train_ind, 9]) # validation labels
 ```
 
 ---
 ## Задания архитектуры сети
 
-```{r require(mxnet)}
+```{r require(mxnet), eval=TRUE, message=FALSE}
 require(mxnet)
+
 # define graph
-data <- mx.symbol.Variable("data")
+data <- mx.symbol.Variable("data") # define variable node
 
-fc1 <- mx.symbol.FullyConnected(data, num_hidden = 1)
+fc1 <- mx.symbol.FullyConnected(data, num_hidden = 1) # define one layer perceptron
 
-linreg <- mx.symbol.LinearRegressionOutput(fc1)
+linreg <- mx.symbol.LinearRegressionOutput(fc1) # output node
 
 # define learing parameters
 initializer <- mx.init.normal(sd = 0.1)
@@ -277,11 +278,10 @@ initializer <- mx.init.normal(sd = 0.1)
 optimizer <- mx.opt.create("sgd", 
                            learning.rate = 1e-6,
                            momentum = 0.9)
-# define logger
-
+# define logger for logging train proccess
 logger <- mx.metric.logger()
 epoch.end.callback <- mx.callback.log.train.metric(
-  period = 4, # число батчей, после которого оценивается метрика
+  period = 4, # number of batches when metrics call
   logger = logger)
 
 # num of epoch
@@ -291,21 +291,21 @@ n_epoch <- 20
 
 ---
 ## Построим граф модели
-```{r eval=FALSE}
+```{r eval=TRUE, fig.height=4, cache=TRUE}
 # plot our model
 graph.viz(linreg)
 ```
-<img src="Deep_Learning_in_R_files/graph.png" style="width:50%" >
+
 
 ---
 ## Обучим
-```{r tidy=FALSE}
+```{r fig.height=4, message=FALSE, warning=FALSE, split=TRUE, collapse=FALSE}
 model <- mx.model.FeedForward.create(
   symbol = linreg, # our model
   X = x_train, # our data
   y = y_train, # our label
   ctx = mx.cpu(), # engine
-  num.round = n_epoch, 
+  num.round = n_epoch, # number of epoch
   initializer = initializer, # inizialize weigths
   optimizer = optimizer, # sgd optimizer
   eval.data = list(data = x_val, label = y_val), # evaluation on evey epoch
@@ -314,11 +314,12 @@ model <- mx.model.FeedForward.create(
   epoch.end.callback = epoch.end.callback) # logger
 
 ```
+![](Deep_Learning_in_R_files/mxnettrain.png)
 
 ---
 ## Построим кривую обучения
-```{r fig.height=4, dev='svg'}
-rmse_log <- data.frame(RMSE = c(logger$train, logger$eval),dataset = c(rep("train", length(logger$train)),                        rep("val", length(logger$eval))),epoch = 1:n_epoch)
+```{r fig.height=4, dev='svg', eval=TRUE}
+rmse_log <- data.frame(RMSE = c(logger$train, logger$eval), dataset = c(rep("train", length(logger$train)),                        rep("val", length(logger$eval))),epoch = 1:n_epoch)
 library(ggplot2)
 ggplot(rmse_log, aes(epoch, RMSE, group = dataset, colour = dataset)) +  geom_point() +  geom_line()
 
@@ -335,7 +336,7 @@ install.packages("keras")
 keras::install_keras(tensorflow = 'gpu')
 ```
 ### Загрузка нужных нам пакетов
-```{r}
+```{r eval=TRUE, message=FALSE}
 require(keras)     # Neural Networks
 require(tidyverse) # Data cleaning / Visualization
 require(knitr)     # Table printing
@@ -345,14 +346,14 @@ require(ggridges)  # Visualization
 
 ---
 ## Загрузка данных
-```{r}
+```{r eval=TRUE, cache=TRUE}
 activityLabels <- read.table("Deep_Learning_in_R_files/HAPT Data Set/activity_labels.txt", 
                              col.names = c("number", "label")) 
 activityLabels %>% kable(align = c("c", "l"))
 ```
 
 ---
-```{r}
+```{r eval=TRUE, cache=TRUE}
 labels <- read.table("Deep_Learning_in_R_files/HAPT Data Set/RawData/labels.txt",
                      col.names = c("experiment", "userId", "activity", "startPos", "endPos"))
 dataFiles <- list.files("Deep_Learning_in_R_files/HAPT Data Set/RawData")
@@ -363,14 +364,15 @@ labels %>%
 
 ---
 ## TLDR
-```{r eval=FALSE}
+#### Потому что очень много препроцессинга и всего такого, мы просто загрузим уже готовый результат
+```{r eval=TRUE, cache=TRUE}
 allObservations <- read_rds("allObservations.rds")
 allObservations %>% dim()
 ```
 
 ---
 ## Посмотрим на данные
-```{r fig.height=4, dev='svg'}
+```{r eval=TRUE, fig.height=4, warning=FALSE, dev='svg', message=FALSE, cache=TRUE}
 allObservations %>% 
   mutate(recording_length = map_int(data,nrow)) %>% 
   ggplot(aes(x = recording_length, y = activityName)) +
@@ -379,7 +381,7 @@ allObservations %>%
 
 ---
 ## Отфильтруем
-```{r fig.height=4}
+```{r fig.height=4, eval=TRUE, cache=TRUE}
 desiredActivities <- c("STAND_TO_SIT", "SIT_TO_STAND", "SIT_TO_LIE",  "LIE_TO_SIT", "STAND_TO_LIE","LIE_TO_STAND")
 filteredObservations <- allObservations %>% 
   filter(activityName %in% desiredActivities) %>% 
@@ -389,7 +391,7 @@ filteredObservations %>% paged_table()
 
 ---
 ## Разделим на трейн тест
-```{r}
+```{r eval=TRUE, cache=TRUE}
 set.seed(100) # seed for reproducibility
 
 ## get all users
@@ -412,11 +414,11 @@ testData <- filteredObservations %>%
 
 ---
 layout: true
-## Посмотрим собственно на активности по классам
+## Посмотрим на графики активности по классам
 
 ---
 
-```{r eval=FALSE}
+```{r eval=TRUE, cache=TRUE}
 unpackedObs <- 1:nrow(trainData) %>% 
   map_df(function(rowNum){
     dataRow <- trainData[rowNum, ]
@@ -431,7 +433,7 @@ unpackedObs <- 1:nrow(trainData) %>%
   mutate(type = ifelse(type == "a", "acceleration", "gyro"))
 ```
 ---
-```{r fig.height=4}
+```{r eval=TRUE, fig.dim=c(11,4), fig.align='center', dev='svg', message=FALSE, warning=FALSE, cache=TRUE}
 unpackedObs %>% 
   ggplot(aes(x = time, y = value, color = direction)) +
   geom_line(alpha = 0.2) +
@@ -446,7 +448,7 @@ layout: true
 ## Подготовка данных к обучению
 
 ---
-```{r}
+```{r message=FALSE, warning=FALSE, require(keras), eval=TRUE, cache=TRUE}
 padSize <- trainData$data %>% 
   map_int(nrow) %>% 
   quantile(p = 0.98) %>% 
@@ -464,7 +466,7 @@ dim(trainObs)
 ```
 
 ---
-```{r}
+```{r eval=TRUE, cache=TRUE}
 # one hot encoding
 oneHotClasses <- . %>% 
 {. - 7} %>%        # bring integers down to 0-6 from 7-12
@@ -479,7 +481,7 @@ layout:true
 ## Наконец то сетка!
 
 ---
-```{r}
+```{r eval=TRUE, cache=TRUE}
 input_shape <- dim(trainObs)[-1]
 num_classes <- dim(trainY)[2]
 
@@ -490,34 +492,34 @@ dense_size <- 48  # size of our penultimate dense layer.
 ```
 
 ---
-```{r}
-model <- keras_model_sequential()
-model %>% layer_conv_1d(
-    filters = filters,
+```{r eval=TRUE, cache=TRUE}
+model <- keras_model_sequential() # define type of class model
+model %>% layer_conv_1d( # add first convolutions layer
+    filters = filters, # num of filters
+    kernel_size = kernel_size, # kernel size
+    input_shape = input_shape, 
+    padding = "valid", # to fill padding with zero
+    activation = "relu") %>% # activation fiucntion on the end of layer
+  layer_batch_normalization() %>% # batch norm
+  layer_spatial_dropout_1d(0.15) %>% # dropout 15% neurons
+  layer_conv_1d(filters = filters/2, # second convolution layer with half of num filters
     kernel_size = kernel_size, 
-    input_shape = input_shape,
-    padding = "valid", 
     activation = "relu") %>%
-  layer_batch_normalization() %>%
-  layer_spatial_dropout_1d(0.15) %>% 
-  layer_conv_1d(filters = filters/2,
-    kernel_size = kernel_size,
-    activation = "relu") %>%
-  layer_global_average_pooling_1d() %>% 
-  layer_batch_normalization() %>%
-  layer_dropout(0.2) %>% 
-  layer_dense(dense_size,
+  layer_global_average_pooling_1d() %>%  # to average all verctor representation in one featuremap
+  layer_batch_normalization() %>% 
+  layer_dropout(0.2) %>% # dropout 20% neurons
+  layer_dense(dense_size, # fullyconected layer perceptron
     activation = "relu") %>% 
   layer_batch_normalization() %>%
   layer_dropout(0.25) %>% 
-  layer_dense(num_classes, 
-    activation = "softmax",
+  layer_dense(num_classes, # one more fully connected layer size of num classes 
+    activation = "softmax", # our loss function for multyply classification
     name = "dense_output") 
 ```
 
 ---
 ### Выведем описание нашей сетки
-```{r eval=FALSE}
+```{r eval=FALSE, cache=TRUE, split=TRUE, collapse=FALSE}
 summary(model)
 ```
 ![](Deep_Learning_in_R_files/keras_summary.png)
@@ -527,17 +529,17 @@ layout:true
 
 ---
 ## Компиляция графа
-```{r eval=FALSE}
+```{r eval=TRUE, cache=TRUE}
 model %>% compile(
-  loss = "categorical_crossentropy",
-  optimizer = "rmsprop",
-  metrics = "accuracy"
+  loss = "categorical_crossentropy", # our loss function
+  optimizer = "rmsprop", # our optimizer alrorithm
+  metrics = "accuracy" # our metric
 )
 ```
 
 ---
 ## train
-```{r eval=FALSE}
+```{r eval=FALSE, cache=TRUE, fig.show='animate', dev='svg'}
 trainHistory <- model %>%
   fit(
     x = trainObs, y = trainY, # data
@@ -552,7 +554,7 @@ trainHistory <- model %>%
 ![](Deep_Learning_in_R_files/train.png)
 
 ---
-![](Deep_Learning_in_R_files/train_plot.png)
+![](Deep_Learning_in_R_files/train_plot2.png)
 
 ---
 layout:true
@@ -560,7 +562,8 @@ layout:true
 
 ---
 ## Подготовка теста
-```{r}
+```{r eval=TRUE, cache=TRUE}
+# one-hot ecnoding labels for predict
 oneHotToLabel <- activityLabels %>% 
   mutate(number = number - 7) %>% 
   filter(number >= 0) %>% 
@@ -568,13 +571,13 @@ oneHotToLabel <- activityLabels %>%
   select(-number)
 ```
 ## Выбор лучшей модели
-```{r}
+```{r eval=TRUE, cache=TRUE}
 bestModel <- load_model_hdf5("best_model.h5")
 ```
 
 ---
 ## Еще немного кода
-```{r}
+```{r eval=TRUE, cache=TRUE}
 tidyPredictionProbs <- bestModel %>% 
   predict(testObs) %>% 
   as_data_frame() %>% 
@@ -595,7 +598,7 @@ predictionPerformance <- tidyPredictionProbs %>%
 ```
 
 ---
-```{r}
+```{r eval=TRUE, cache=TRUE}
 predictionPerformance %>% paged_table()
 ```
 
@@ -604,7 +607,7 @@ layout:true
 ## Визуализация ошибок
 
 ---
-```{r fig.height=4}
+```{r fig.height=4, eval=TRUE, cache=TRUE}
 predictionPerformance %>% 
   mutate(result = ifelse(correct, 'Correct', 'Incorrect')) %>% 
   ggplot(aes(highestProb)) +
@@ -616,7 +619,7 @@ predictionPerformance %>%
 ```
 
 ---
-```{r fig.height=4}
+```{r fig.height=4, eval=TRUE, cache=TRUE}
 predictionPerformance %>% 
   group_by(truth, predicted) %>% 
   summarise(count = n()) %>% 
@@ -644,9 +647,10 @@ class: center, middle
 
 # Спасибо!
 
-Слайды сделаны с помощью R package [**xaringan**](https://github.com/yihui/xaringan).
+ Слайды сделаны с помощью R package [**xaringan**](https://github.com/yihui/xaringan).
+
+
+ Веб версию слайдов можно найти на https://metya.github.io/DeepLearning_in_R/
 
-Веб версию слайдов можно найти на https://metya.github.io/DeepLearning_n_R/
 
-Код можно посмотреть здесь 
-https://github.com/metya/DeepLearning_n_R/
+ Код можно посмотреть здесь        https://github.com/metya/DeepLearning_in_R/

Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 61 - 223
Deep_Learning_in_R.html


+ 17 - 0
Deep_Learning_in_R_cache/html/__packages

@@ -0,0 +1,17 @@
+base
+xaringanthemer
+mxnet
+bindrcpp
+ggplot2
+keras
+tidyverse
+tibble
+tidyr
+readr
+purrr
+dplyr
+stringr
+forcats
+knitr
+rmarkdown
+ggridges

BIN
Deep_Learning_in_R_cache/html/require(keras)_4a95b8774714cd7667d4bbf8d95ef0d4.RData


BIN
Deep_Learning_in_R_cache/html/require(keras)_4a95b8774714cd7667d4bbf8d95ef0d4.rdb


BIN
Deep_Learning_in_R_cache/html/require(keras)_4a95b8774714cd7667d4bbf8d95ef0d4.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-10_bb765d51318b911df473bfe27f9399a1.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-10_bb765d51318b911df473bfe27f9399a1.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-10_bb765d51318b911df473bfe27f9399a1.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-11_9bce284609cda3286ada25ec8cf29fe2.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-11_9bce284609cda3286ada25ec8cf29fe2.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-11_9bce284609cda3286ada25ec8cf29fe2.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-12_3821e394b95e072f935068414f88dd3e.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-12_3821e394b95e072f935068414f88dd3e.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-12_3821e394b95e072f935068414f88dd3e.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-13_1695239dde76f9f0869e351aae020883.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-13_1695239dde76f9f0869e351aae020883.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-13_1695239dde76f9f0869e351aae020883.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-14_fb13f2d336cd6cc0d5c30b9c4c1a4583.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-14_fb13f2d336cd6cc0d5c30b9c4c1a4583.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-14_fb13f2d336cd6cc0d5c30b9c4c1a4583.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-15_2802a50d8885003f9037f8c13e229397.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-15_2802a50d8885003f9037f8c13e229397.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-15_2802a50d8885003f9037f8c13e229397.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-16_e93bbac295d347948c437f6b8be85f59.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-16_e93bbac295d347948c437f6b8be85f59.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-16_e93bbac295d347948c437f6b8be85f59.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-17_fef6216cc3763052cf9c80149cfe7cc2.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-17_fef6216cc3763052cf9c80149cfe7cc2.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-17_fef6216cc3763052cf9c80149cfe7cc2.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-18_05ecc2868a72c07b0d5b8bc950b80d5d.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-18_05ecc2868a72c07b0d5b8bc950b80d5d.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-18_05ecc2868a72c07b0d5b8bc950b80d5d.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-19_b0e0fbe91d2b2969c3eee6f0aa64b6b7.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-19_b0e0fbe91d2b2969c3eee6f0aa64b6b7.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-19_b0e0fbe91d2b2969c3eee6f0aa64b6b7.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-20_f835d053d08f2c7ca2355b9bf5c78dca.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-20_f835d053d08f2c7ca2355b9bf5c78dca.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-20_f835d053d08f2c7ca2355b9bf5c78dca.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-21_8ca6fc5509dd2e438532bf7d3bace749.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-21_8ca6fc5509dd2e438532bf7d3bace749.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-21_8ca6fc5509dd2e438532bf7d3bace749.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-22_4d460e32dfe62e168283a1af95c38062.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-22_4d460e32dfe62e168283a1af95c38062.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-22_4d460e32dfe62e168283a1af95c38062.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-23_60c1a55fc84dc0dea24e0f4b711ee9e1.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-23_60c1a55fc84dc0dea24e0f4b711ee9e1.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-23_60c1a55fc84dc0dea24e0f4b711ee9e1.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-24_e0e68bc65e8be667289586ce24d9b2ff.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-24_e0e68bc65e8be667289586ce24d9b2ff.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-24_e0e68bc65e8be667289586ce24d9b2ff.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-25_55397e14a6ace60c79497409784306ca.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-25_55397e14a6ace60c79497409784306ca.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-25_55397e14a6ace60c79497409784306ca.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-26_093e583b095fe17ad0da67e72e154d27.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-26_093e583b095fe17ad0da67e72e154d27.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-26_093e583b095fe17ad0da67e72e154d27.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-27_5810f71bc44e68595d7bc2f162913ea4.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-27_5810f71bc44e68595d7bc2f162913ea4.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-27_5810f71bc44e68595d7bc2f162913ea4.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-28_375ad401cb5a8df0dfe4815fbbfc4692.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-28_375ad401cb5a8df0dfe4815fbbfc4692.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-28_375ad401cb5a8df0dfe4815fbbfc4692.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-29_9cd5192000319d370709958867a3892d.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-29_9cd5192000319d370709958867a3892d.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-29_9cd5192000319d370709958867a3892d.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-30_e73310f60fb9dd40c6b7e5fcedd76464.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-30_e73310f60fb9dd40c6b7e5fcedd76464.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-30_e73310f60fb9dd40c6b7e5fcedd76464.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-31_32c2f9b4b33a2fd3c1be561f6a1ee593.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-31_32c2f9b4b33a2fd3c1be561f6a1ee593.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-31_32c2f9b4b33a2fd3c1be561f6a1ee593.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-32_440f1003e124cde39388d86af9f2524d.RData


+ 0 - 0
Deep_Learning_in_R_cache/html/unnamed-chunk-32_440f1003e124cde39388d86af9f2524d.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-32_440f1003e124cde39388d86af9f2524d.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-3_0e9b76ed9c5f2d49811a44b951fdecb1.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-3_0e9b76ed9c5f2d49811a44b951fdecb1.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-3_0e9b76ed9c5f2d49811a44b951fdecb1.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-4_6a8f92a2a39c40f5fc18dd3b917a541a.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-4_6a8f92a2a39c40f5fc18dd3b917a541a.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-4_6a8f92a2a39c40f5fc18dd3b917a541a.rdx


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-5_570a7c2f944a761a305df3dcef4571da.RData


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-5_570a7c2f944a761a305df3dcef4571da.rdb


BIN
Deep_Learning_in_R_cache/html/unnamed-chunk-5_570a7c2f944a761a305df3dcef4571da.rdx


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 14 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-10-1.svg


+ 1 - 1
Deep_Learning_in_R_files/figure-html/unnamed-chunk-13-1.svg

@@ -211,7 +211,7 @@
   <path d="M 145 5.480469 L 483 5.480469 L 483 29 L 145 29 Z M 145 5.480469 "/>
 </clipPath>
 </defs>
-<g id="surface361">
+<g id="surface58">
 <rect x="0" y="0" width="504" height="288" style="fill:rgb(100%,100%,100%);fill-opacity:1;stroke:none;"/>
 <rect x="0" y="0" width="504" height="288" style="fill:rgb(100%,100%,100%);fill-opacity:1;stroke:none;"/>
 <path style="fill:none;stroke-width:1.066978;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 0 288 L 504 288 L 504 0 L 0 0 Z M 0 288 "/>

Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 38 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-14-1.svg


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 38 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-16-1.svg


BIN
Deep_Learning_in_R_files/figure-html/unnamed-chunk-17-1.png


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 26 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-17-1.svg


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 26 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-18-1.svg


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 26 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-20-1.svg


BIN
Deep_Learning_in_R_files/figure-html/unnamed-chunk-28-1.png


BIN
Deep_Learning_in_R_files/figure-html/unnamed-chunk-29-1.png


BIN
Deep_Learning_in_R_files/figure-html/unnamed-chunk-30-1.png


BIN
Deep_Learning_in_R_files/figure-html/unnamed-chunk-31-1.png


BIN
Deep_Learning_in_R_files/figure-html/unnamed-chunk-32-1.png


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 2 - 3
Deep_Learning_in_R_files/figure-html/unnamed-chunk-7-1.svg


Những thai đổi đã bị hủy bỏ vì nó quá lớn
+ 23 - 0
Deep_Learning_in_R_files/figure-html/unnamed-chunk-8-1.svg


Một số tệp đã không được hiển thị bởi vì quá nhiều tập tin thay đổi trong này khác