{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.feature_selection import RFECV, RFE\n", "from sklearn.metrics import accuracy_score\n", "from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split\n", "from sklearn.linear_model import LinearRegression, Ridge\n", "from sklearn import datasets\n", "from sklearn.ensemble import RandomForestRegressor\n", "from hyperopt import tpe\n", "import hpsklearn\n", "from hpsklearn import HyperoptEstimator, any_regressor, any_classifier, any_preprocessing\n", "!set OMP_NUM_THREADS=1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bank_df = np.loadtxt('test_task_data_201808091645.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.random.seed(13)\n", "X = train\n", "y = e\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,\n", " random_state=13)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "estim = HyperoptEstimator(regressor=any_regressor('my_reg'),\n", " #classifier=any_classifier('my_clf'),\n", " #preprocessing=any_preprocessing('my_pre'),\n", " algo=tpe.suggest,\n", " max_evals=100,\n", " trial_timeout=120)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Search the hyperparameter space based on the data\n", "estim.fit( X_train.values, y_train.values )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Show the results\n", "print(estim.score( X_test, y_test ))\n", "\n", "print(estim.best_model())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }