1
0

Deep_Learning_in_R.html 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <title>Deep Learning in R</title>
  5. <meta charset="utf-8">
  6. <meta name="author" content="metya" />
  7. <meta name="date" content="2018-12-19" />
  8. <script src="libs/htmlwidgets/htmlwidgets.js"></script>
  9. <script src="libs/viz/viz.js"></script>
  10. <link href="libs/DiagrammeR-styles/styles.css" rel="stylesheet" />
  11. <script src="libs/grViz-binding/grViz.js"></script>
  12. <link href="libs/pagedtable/css/pagedtable.css" rel="stylesheet" />
  13. <script src="libs/pagedtable/js/pagedtable.js"></script>
  14. <link rel="stylesheet" href="xaringan-themer.css" type="text/css" />
  15. </head>
  16. <body>
  17. <textarea id="source">
  18. class: center, middle, inverse, title-slide
  19. # Deep Learning in R
  20. ## ░<br/>Обзор фреймворков с примерами
  21. ### metya
  22. ### 2018-12-19
  23. ---
  24. class: center, middle
  25. background-color: #8d6e63
  26. #Disclaimer
  27. Цель доклада не дать понимание, что такое глубокое обучение и детально разобрать как работать с ним и обучать современные модели, а скорее показать, как просто можно начать тем, кто давно хотел и чесались руки, но все было никак не взяться
  28. ---
  29. # Deep Learning
  30. ## Что это?
  31. --
  32. * Когда у нас есть исскуственная нейронная сеть
  33. --
  34. * Когда скрытых слоев в этой сети больше чем два
  35. --
  36. ![](https://cdn-images-1.medium.com/max/1600/1*dnvGC-PORSoCo7VXT3PV_A.png)
  37. .footnotes[[1] https://machinelearningmastery.com/what-is-deep-learning/]
  38. ---
  39. ## Как это математически
  40. ![](Deep_Learning_in_R_files/perceptron.png)
  41. ???
  42. На самом деле это конечно самый простой юнит, самый базовый.
  43. ---
  44. background-image: url(https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2016/08/Why-Deep-Learning-1024x742.png)
  45. ???
  46. Image credit: [Andrew Ng](http://www.slideshare.net/ExtractConf)
  47. ---
  48. class: inverse, center, middle, title-slide
  49. # Frameworks
  50. ---
  51. ![](https://cdn-images-1.medium.com/max/1600/1*s_BwkYxpGv34vjOHi8tDzg.png)
  52. .footnotes[
  53. [1] https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
  54. ]
  55. ---
  56. ## Нас интересуют только те, что есть в R через API
  57. --
  58. * ###TensorFlow
  59. --
  60. * ###theano
  61. --
  62. * ###Keras
  63. --
  64. * ###CNTK
  65. --
  66. * ###MXNet
  67. --
  68. * ###ONNX
  69. ---
  70. ## Есть еше несколько пакетов
  71. * darch (removed from cran)
  72. * deepnet
  73. * deepr
  74. * H2O (interface) ([Tutorial](https://htmlpreview.github.io/?https://github.com/ledell/sldm4-h2o/blob/master/sldm4-deeplearning-h2o.html))
  75. ???
  76. Вода это по большей части МЛ фреймворк, с недавних пор, где появился модуль про глубокое обучение. Есть неплохой туториал для р пакета. Умеет в поиск гиперпараметров, кроссвалидацию и прочие нужные для МЛ штуки для сеток, очевидно это работает только для маленьких сетей)
  77. Но они р специфичны, кроме воды, и соотвественно медленные, да и умеют довольно мало. Новые годные архитектуры сетей туда не имплементированы.
  78. ---
  79. ![](https://cdn-images-1.medium.com/max/1600/1*zmMOdVZ_j9vwMcpdD8Uceg.png)
  80. https://www.tensorflow.org/
  81. https://tensorflow.rstudio.com/
  82. - Делает Google
  83. - Самый популярный, имеет тучу туториалов и книг
  84. - Имеет самый большой спрос у продакшн систем
  85. - Имеет API во множество языков
  86. - Имеет статический граф вычислений, что бывает неудобно, зато оптимизированно
  87. - Примерно с лета имеет фичу **eager execution**, которая почти нивелирует это неудобство. Но почти не считается
  88. - Доступен в R как самостоятельно, так и как бэкэнд Keras
  89. ---
  90. ![](https://cdn-images-1.medium.com/max/1600/1*dT-zhP2bmtxSuOja8gNGxA.png)
  91. http://www.deeplearning.net/software/theano/
  92. - Делался силами университета Монреаль с 2007
  93. - Один из самый старых фреймворков, но почти почил в забытьи
  94. - Придумали идею абстракции вычислительных графов (статических) для оптимизации и вычисления нейронных сетей
  95. - В R доступен как бэкенд через Keras
  96. ---
  97. ![](https://cdn-images-1.medium.com/max/1600/1*tzgWkBhJPl5FFFe4uhn1AA.png)
  98. https://cntk.ai/
  99. - Делается силами Майкрософт
  100. - Имеет половинчатые динамические вычислительные графы (на самом деле динамические тензоры скорее)
  101. - Доступен как бэкенд Keras так и как самостоятельный бэкенд с биндингами в R через reticulate package, что значит нужно иметь python версию фреймворка
  102. ---
  103. ![](https://cdn-images-1.medium.com/max/1600/1*k9LIDsTb1K-Uejn7MCO7nA.png)
  104. https://keras.io/
  105. https://keras.rstudio.com/
  106. https://tensorflow.rstudio.com/keras/
  107. - Высокоуровневый фреймворк над другими такими бэкэндами как Theano, CNTK, Tensorflow, и еще некоторые на подходе
  108. - Делается Франсуа Шолле, который написал книгу Deep Learning in R
  109. - Очень простой код
  110. - Один и тот же код работает на разных бэкендах, что теоретически может быть полезно (нет)
  111. - Есть очень много блоков нейросетей из современных State-of-the-Art работ
  112. - Нивелирует боль статических вычислительных графов (не совсем)
  113. - Уже давно дефолтом поставляется вместе с TensorFlow как его часть, но можно использовать и отдельно
  114. ---
  115. ![](https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo_2.png)&lt;img src="https://raw.githubusercontent.com/dmlc/dmlc.github.io/master/img/logo-m/mxnetR.png" style=width:30% /&gt;
  116. https://mxnet.apache.org/
  117. https://github.com/apache/incubator-mxnet/tree/master/R-package
  118. - Является проектом Apache
  119. - Сочетает в себе динамические и статические графы
  120. - Тоже имеет зоопарк предобученных моделей
  121. - Как и TensorFlow поддерживается многими языками, что может быть очень полезно
  122. - Довольно разумный и хороший фреймворк, непонятно, почему не пользуется популярностью
  123. ---
  124. ![](https://onnx.ai/onnx-r/articles/imgs/ONNX_logo_main.png)
  125. https://onnx.ai/
  126. https://onnx.ai/onnx-r/
  127. - Предоставляет открытый формат представления вычислительных графов, чтобы можно было обмениваться запускать одни и теже, экспортированные в этот формат, модели с помощью разных фреймворков и своего рантайма
  128. - Можно работать из R
  129. - Изначально делался Microsoft вместе с Facebook
  130. - Поддерживает кучу фреймворков нативно и конвертацию в ML и TF, Keras
  131. ---
  132. class: inverse, middle, center
  133. # Deep Learning with MXNet
  134. ---
  135. ## Установка
  136. В Windows и MacOS в R
  137. ```r
  138. # Windows and MacOs
  139. cran &lt;- getOption("repos")
  140. cran["dmlc"] &lt;- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/GPU/cu92"
  141. options(repos = cran)
  142. install.packages("mxnet")
  143. ```
  144. Linux bash
  145. ```bash
  146. # On linux
  147. git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet
  148. cd mxnet/docs/install
  149. ./install_mxnet_ubuntu_python.sh
  150. ./install_mxnet_ubuntu_r.sh
  151. cd incubator-mxnet
  152. make rpkg
  153. ```
  154. ---
  155. ## Загрузка и обработка данных
  156. ```r
  157. df &lt;- readRDS('data.rds')
  158. set.seed(100) #set seed to reproduce results
  159. ```
  160. ```r
  161. #transform and split train on x and y
  162. train_ind &lt;- sample(1:77, 60) # random split data
  163. x_train &lt;- as.matrix(df[train_ind, 2:8]) # train data
  164. y_train &lt;- unlist(df[train_ind, 9]) # train labels
  165. x_val &lt;- as.matrix(df[-train_ind, 2:8]) # test validation data
  166. y_val &lt;- unlist(df[-train_ind, 9]) # validation labels
  167. ```
  168. ---
  169. ## Задания архитектуры сети
  170. ```r
  171. require(mxnet)
  172. # define graph
  173. data &lt;- mx.symbol.Variable("data") # define variable node
  174. fc1 &lt;- mx.symbol.FullyConnected(data, num_hidden = 1) # define one layer perceptron
  175. linreg &lt;- mx.symbol.LinearRegressionOutput(fc1) # output node
  176. # define learing parameters
  177. initializer &lt;- mx.init.normal(sd = 0.1)
  178. optimizer &lt;- mx.opt.create("sgd",
  179. learning.rate = 1e-6,
  180. momentum = 0.9)
  181. # define logger for logging train proccess
  182. logger &lt;- mx.metric.logger()
  183. epoch.end.callback &lt;- mx.callback.log.train.metric(
  184. period = 4, # number of batches when metrics call
  185. logger = logger)
  186. # num of epoch
  187. n_epoch &lt;- 20
  188. ```
  189. ---
  190. ## Построим граф модели
  191. ```r
  192. # plot our model
  193. graph.viz(linreg)
  194. ```
  195. <div id="htmlwidget-33d7656478955a07fef5" style="width:504px;height:288px;" class="grViz html-widget"></div>
  196. <script type="application/json" data-for="htmlwidget-33d7656478955a07fef5">{"x":{"diagram":"digraph {\n\ngraph [layout = \"dot\",\n rankdir = \"TD\"]\n\n\n\n \"1\" [label = \"data\ndata\", shape = \"oval\", penwidth = \"2\", color = \"#8dd3c7\", style = \"filled\", fontcolor = \"black\", fillcolor = \"#8DD3C7FF\"] \n \"2\" [label = \"FullyConnected\nfullyconnected9\n1\", shape = \"box\", penwidth = \"2\", color = \"#fb8072\", style = \"filled\", fontcolor = \"black\", fillcolor = \"#FB8072FF\"] \n \"3\" [label = \"LinearRegressionOutput\nlinearregressionoutput9\", shape = \"box\", penwidth = \"2\", color = \"#b3de69\", style = \"filled\", fontcolor = \"black\", fillcolor = \"#B3DE69FF\"] \n\"1\"->\"2\" [color = \"black\", fontcolor = \"black\"] \n\"2\"->\"3\" [color = \"black\", fontcolor = \"black\"] \n}","config":{"engine":"dot","options":null}},"evals":[],"jsHooks":[]}</script>
  197. ---
  198. ## Обучим
  199. ```r
  200. model &lt;- mx.model.FeedForward.create(
  201. symbol = linreg, # our model
  202. X = x_train, # our data
  203. y = y_train, # our label
  204. ctx = mx.cpu(), # engine
  205. num.round = n_epoch, # number of epoch
  206. initializer = initializer, # inizialize weigths
  207. optimizer = optimizer, # sgd optimizer
  208. eval.data = list(data = x_val, label = y_val), # evaluation on evey epoch
  209. eval.metric = mx.metric.rmse, # metric
  210. array.batch.size = 15,
  211. epoch.end.callback = epoch.end.callback) # logger
  212. ```
  213. ![](Deep_Learning_in_R_files/mxnettrain.png)
  214. ---
  215. ## Построим кривую обучения
  216. ```r
  217. rmse_log &lt;- data.frame(RMSE = c(logger$train, logger$eval), dataset = c(rep("train", length(logger$train)), rep("val", length(logger$eval))),epoch = 1:n_epoch)
  218. library(ggplot2)
  219. ggplot(rmse_log, aes(epoch, RMSE, group = dataset, colour = dataset)) + geom_point() + geom_line()
  220. ```
  221. ![](Deep_Learning_in_R_files/figure-html/unnamed-chunk-7-1.svg)&lt;!-- --&gt;
  222. ---
  223. class: inverse, center, middle
  224. # Deep Learning with Keras
  225. ---
  226. ## Установка
  227. ```r
  228. install.packages("keras")
  229. keras::install_keras(tensorflow = 'gpu')
  230. ```
  231. ### Загрузка нужных нам пакетов
  232. ```r
  233. require(keras) # Neural Networks
  234. require(tidyverse) # Data cleaning / Visualization
  235. require(knitr) # Table printing
  236. require(rmarkdown) # Misc. output utilities
  237. require(ggridges) # Visualization
  238. ```
  239. ---
  240. ## Загрузка данных
  241. ```r
  242. activityLabels &lt;- read.table("Deep_Learning_in_R_files/HAPT Data Set/activity_labels.txt",
  243. col.names = c("number", "label"))
  244. activityLabels %&gt;% kable(align = c("c", "l"))
  245. ```
  246. number label
  247. -------- -------------------
  248. 1 WALKING
  249. 2 WALKING_UPSTAIRS
  250. 3 WALKING_DOWNSTAIRS
  251. 4 SITTING
  252. 5 STANDING
  253. 6 LAYING
  254. 7 STAND_TO_SIT
  255. 8 SIT_TO_STAND
  256. 9 SIT_TO_LIE
  257. 10 LIE_TO_SIT
  258. 11 STAND_TO_LIE
  259. 12 LIE_TO_STAND
  260. ---
  261. ```r
  262. labels &lt;- read.table("Deep_Learning_in_R_files/HAPT Data Set/RawData/labels.txt",
  263. col.names = c("experiment", "userId", "activity", "startPos", "endPos"))
  264. dataFiles &lt;- list.files("Deep_Learning_in_R_files/HAPT Data Set/RawData")
  265. labels %&gt;%
  266. head(50) %&gt;%
  267. paged_table()
  268. ```
  269. &lt;div data-pagedtable="false"&gt;
  270. &lt;script data-pagedtable-source type="application/json"&gt;
  271. {"columns":[{"label":[""],"name":["_rn_"],"type":[""],"align":["left"]},{"label":["experiment"],"name":[1],"type":["int"],"align":["right"]},{"label":["userId"],"name":[2],"type":["int"],"align":["right"]},{"label":["activity"],"name":[3],"type":["int"],"align":["right"]},{"label":["startPos"],"name":[4],"type":["int"],"align":["right"]},{"label":["endPos"],"name":[5],"type":["int"],"align":["right"]}],"data":[{"1":"1","2":"1","3":"5","4":"250","5":"1232","_rn_":"1"},{"1":"1","2":"1","3":"7","4":"1233","5":"1392","_rn_":"2"},{"1":"1","2":"1","3":"4","4":"1393","5":"2194","_rn_":"3"},{"1":"1","2":"1","3":"8","4":"2195","5":"2359","_rn_":"4"},{"1":"1","2":"1","3":"5","4":"2360","5":"3374","_rn_":"5"},{"1":"1","2":"1","3":"11","4":"3375","5":"3662","_rn_":"6"},{"1":"1","2":"1","3":"6","4":"3663","5":"4538","_rn_":"7"},{"1":"1","2":"1","3":"10","4":"4539","5":"4735","_rn_":"8"},{"1":"1","2":"1","3":"4","4":"4736","5":"5667","_rn_":"9"},{"1":"1","2":"1","3":"9","4":"5668","5":"5859","_rn_":"10"},{"1":"1","2":"1","3":"6","4":"5860","5":"6786","_rn_":"11"},{"1":"1","2":"1","3":"12","4":"6787","5":"6977","_rn_":"12"},{"1":"1","2":"1","3":"1","4":"7496","5":"8078","_rn_":"13"},{"1":"1","2":"1","3":"1","4":"8356","5":"9250","_rn_":"14"},{"1":"1","2":"1","3":"1","4":"9657","5":"10567","_rn_":"15"},{"1":"1","2":"1","3":"1","4":"10750","5":"11714","_rn_":"16"},{"1":"1","2":"1","3":"3","4":"13191","5":"13846","_rn_":"17"},{"1":"1","2":"1","3":"2","4":"14069","5":"14699","_rn_":"18"},{"1":"1","2":"1","3":"3","4":"14869","5":"15492","_rn_":"19"},{"1":"1","2":"1","3":"2","4":"15712","5":"16377","_rn_":"20"},{"1":"1","2":"1","3":"3","4":"16530","5":"17153","_rn_":"21"},{"1":"1","2":"1","3":"2","4":"17298","5":"17970","_rn_":"22"},{"1":"2","2":"1","3":"5","4":"251","5":"1226","_rn_":"23"},{"1":"2","2":"1","3":"7","4":"1227","5":"1432","_rn_":"24"},{"1":"2","2":"1","3":"4","4":"1433","5":"2221","_rn_":"25"},{"1":"2","2":"1","3":"8","4":"2222","5":"2377","_rn_":"26"},{"1":"2","2":"1","3":"5","4":"2378","5":"3304","_rn_":"27"},{"1":"2","2":"1","3":"11","4":"3305","5":"3572","_rn_":"28"},{"1":"2","2":"1","3":"6","4":"3573","5":"4435","_rn_":"29"},{"1":"2","2":"1","3":"10","4":"4436","5":"4619","_rn_":"30"},{"1":"2","2":"1","3":"4","4":"4620","5":"5452","_rn_":"31"},{"1":"2","2":"1","3":"9","4":"5453","5":"5689","_rn_":"32"},{"1":"2","2":"1","3":"6","4":"5690","5":"6467","_rn_":"33"},{"1":"2","2":"1","3":"12","4":"6468","5":"6709","_rn_":"34"},{"1":"2","2":"1","3":"1","4":"7624","5":"8252","_rn_":"35"},{"1":"2","2":"1","3":"1","4":"8618","5":"9576","_rn_":"36"},{"1":"2","2":"1","3":"1","4":"9991","5":"10927","_rn_":"37"},{"1":"2","2":"1","3":"1","4":"11311","5":"12282","_rn_":"38"},{"1":"2","2":"1","3":"3","4":"13129","5":"13379","_rn_":"39"},{"1":"2","2":"1","3":"3","4":"13495","5":"13927","_rn_":"40"},{"1":"2","2":"1","3":"2","4":"14128","5":"14783","_rn_":"41"},{"1":"2","2":"1","3":"3","4":"15037","5":"15684","_rn_":"42"},{"1":"2","2":"1","3":"2","4":"15920","5":"16598","_rn_":"43"},{"1":"2","2":"1","3":"3","4":"16847","5":"17471","_rn_":"44"},{"1":"2","2":"1","3":"2","4":"17725","5":"18425","_rn_":"45"},{"1":"3","2":"2","3":"5","4":"298","5":"1398","_rn_":"46"},{"1":"3","2":"2","3":"7","4":"1399","5":"1555","_rn_":"47"},{"1":"3","2":"2","3":"4","4":"1686","5":"2627","_rn_":"48"},{"1":"3","2":"2","3":"8","4":"2628","5":"2769","_rn_":"49"},{"1":"3","2":"2","3":"5","4":"2770","5":"3904","_rn_":"50"}],"options":{"columns":{"min":{},"max":[10]},"rows":{"min":[10],"max":[10]},"pages":{}}}
  272. &lt;/script&gt;
  273. &lt;/div&gt;
  274. ---
  275. ## TLDR
  276. #### Потому что очень много препроцессинга и всего такого, мы просто загрузим уже готовый результат
  277. ```r
  278. allObservations &lt;- read_rds("allObservations.rds")
  279. allObservations %&gt;% dim()
  280. ```
  281. ```
  282. ## [1] 1214 5
  283. ```
  284. ---
  285. ## Посмотрим на данные
  286. ```r
  287. allObservations %&gt;%
  288. mutate(recording_length = map_int(data,nrow)) %&gt;%
  289. ggplot(aes(x = recording_length, y = activityName)) +
  290. geom_density_ridges(alpha = 0.8)
  291. ```
  292. ![](Deep_Learning_in_R_files/figure-html/unnamed-chunk-13-1.svg)&lt;!-- --&gt;
  293. ---
  294. ## Отфильтруем
  295. ```r
  296. desiredActivities &lt;- c("STAND_TO_SIT", "SIT_TO_STAND", "SIT_TO_LIE", "LIE_TO_SIT", "STAND_TO_LIE","LIE_TO_STAND")
  297. filteredObservations &lt;- allObservations %&gt;%
  298. filter(activityName %in% desiredActivities) %&gt;%
  299. mutate(observationId = 1:n())
  300. filteredObservations %&gt;% paged_table()
  301. ```
  302. &lt;div data-pagedtable="false"&gt;
  303. &lt;script data-pagedtable-source type="application/json"&gt;
  304. {"columns":[{"label":["experiment"],"name":[1],"type":["int"],"align":["right"]},{"label":["userId"],"name":[2],"type":["int"],"align":["right"]},{"label":["activity"],"name":[3],"type":["int"],"align":["right"]},{"label":["data"],"name":[4],"type":["list"],"align":["right"]},{"label":["activityName"],"name":[5],"type":["fctr"],"align":["left"]},{"label":["observationId"],"name":[6],"type":["int"],"align":["right"]}],"data":[{"1":"1","2":"1","3":"7","4":"&lt;data.frame [160 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"1"},{"1":"2","2":"1","3":"7","4":"&lt;data.frame [206 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"2"},{"1":"3","2":"2","3":"7","4":"&lt;data.frame [157 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"3"},{"1":"4","2":"2","3":"7","4":"&lt;data.frame [160 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"4"},{"1":"5","2":"3","3":"7","4":"&lt;data.frame [142 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"5"},{"1":"6","2":"3","3":"7","4":"&lt;data.frame [190 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"6"},{"1":"7","2":"4","3":"7","4":"&lt;data.frame [236 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"7"},{"1":"8","2":"4","3":"7","4":"&lt;data.frame [178 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"8"},{"1":"9","2":"5","3":"7","4":"&lt;data.frame [165 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"9"},{"1":"10","2":"5","3":"7","4":"&lt;data.frame [235 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"10"},{"1":"11","2":"6","3":"7","4":"&lt;data.frame [185 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"11"},{"1":"12","2":"6","3":"7","4":"&lt;data.frame [151 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"12"},{"1":"13","2":"7","3":"7","4":"&lt;data.frame [114 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"13"},{"1":"14","2":"7","3":"7","4":"&lt;data.frame [90 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"14"},{"1":"15","2":"8","3":"7","4":"&lt;data.frame [111 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"15"},{"1":"16","2":"8","3":"7","4":"&lt;data.frame [129 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"16"},{"1":"17","2":"9","3":"7","4":"&lt;data.frame [118 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"17"},{"1":"18","2":"9","3":"7","4":"&lt;data.frame [132 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"18"},{"1":"19","2":"10","3":"7","4":"&lt;data.frame [133 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"19"},{"1":"20","2":"10","3":"7","4":"&lt;data.frame [112 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"20"},{"1":"22","2":"11","3":"7","4":"&lt;data.frame [141 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"21"},{"1":"23","2":"11","3":"7","4":"&lt;data.frame [172 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"22"},{"1":"24","2":"12","3":"7","4":"&lt;data.frame [175 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"23"},{"1":"25","2":"12","3":"7","4":"&lt;data.frame [190 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"24"},{"1":"26","2":"13","3":"7","4":"&lt;data.frame [138 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"25"},{"1":"27","2":"13","3":"7","4":"&lt;data.frame [250 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"26"},{"1":"28","2":"14","3":"7","4":"&lt;data.frame [298 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"27"},{"1":"29","2":"14","3":"7","4":"&lt;data.frame [177 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"28"},{"1":"30","2":"15","3":"7","4":"&lt;data.frame [144 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"29"},{"1":"31","2":"15","3":"7","4":"&lt;data.frame [138 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"30"},{"1":"32","2":"16","3":"7","4":"&lt;data.frame [180 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"31"},{"1":"33","2":"16","3":"7","4":"&lt;data.frame [175 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"32"},{"1":"34","2":"17","3":"7","4":"&lt;data.frame [142 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"33"},{"1":"35","2":"17","3":"7","4":"&lt;data.frame [154 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"34"},{"1":"36","2":"18","3":"7","4":"&lt;data.frame [307 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"35"},{"1":"37","2":"18","3":"7","4":"&lt;data.frame [227 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"36"},{"1":"38","2":"19","3":"7","4":"&lt;data.frame [179 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"37"},{"1":"39","2":"19","3":"7","4":"&lt;data.frame [163 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"38"},{"1":"40","2":"20","3":"7","4":"&lt;data.frame [201 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"39"},{"1":"41","2":"20","3":"7","4":"&lt;data.frame [219 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"40"},{"1":"42","2":"21","3":"7","4":"&lt;data.frame [177 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"41"},{"1":"43","2":"21","3":"7","4":"&lt;data.frame [140 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"42"},{"1":"44","2":"22","3":"7","4":"&lt;data.frame [214 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"43"},{"1":"45","2":"22","3":"7","4":"&lt;data.frame [119 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"44"},{"1":"46","2":"23","3":"7","4":"&lt;data.frame [143 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"45"},{"1":"47","2":"23","3":"7","4":"&lt;data.frame [222 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"46"},{"1":"48","2":"24","3":"7","4":"&lt;data.frame [171 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"47"},{"1":"49","2":"24","3":"7","4":"&lt;data.frame [187 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"48"},{"1":"50","2":"25","3":"7","4":"&lt;data.frame [138 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"49"},{"1":"51","2":"25","3":"7","4":"&lt;data.frame [219 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"50"},{"1":"52","2":"26","3":"7","4":"&lt;data.frame [129 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"51"},{"1":"53","2":"26","3":"7","4":"&lt;data.frame [151 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"52"},{"1":"54","2":"27","3":"7","4":"&lt;data.frame [168 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"53"},{"1":"55","2":"27","3":"7","4":"&lt;data.frame [188 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"54"},{"1":"56","2":"28","3":"7","4":"&lt;data.frame [259 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"55"},{"1":"57","2":"28","3":"7","4":"&lt;data.frame [162 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"56"},{"1":"58","2":"29","3":"7","4":"&lt;data.frame [157 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"57"},{"1":"59","2":"29","3":"7","4":"&lt;data.frame [169 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"58"},{"1":"60","2":"30","3":"7","4":"&lt;data.frame [113 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"59"},{"1":"61","2":"30","3":"7","4":"&lt;data.frame [216 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_SIT","6":"60"},{"1":"1","2":"1","3":"8","4":"&lt;data.frame [165 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"61"},{"1":"2","2":"1","3":"8","4":"&lt;data.frame [156 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"62"},{"1":"3","2":"2","3":"8","4":"&lt;data.frame [142 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"63"},{"1":"4","2":"2","3":"8","4":"&lt;data.frame [139 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"64"},{"1":"5","2":"3","3":"8","4":"&lt;data.frame [110 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"65"},{"1":"6","2":"3","3":"8","4":"&lt;data.frame [183 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"66"},{"1":"7","2":"4","3":"8","4":"&lt;data.frame [130 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"67"},{"1":"8","2":"4","3":"8","4":"&lt;data.frame [143 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"68"},{"1":"9","2":"5","3":"8","4":"&lt;data.frame [126 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"69"},{"1":"10","2":"5","3":"8","4":"&lt;data.frame [129 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"70"},{"1":"11","2":"6","3":"8","4":"&lt;data.frame [114 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"71"},{"1":"12","2":"6","3":"8","4":"&lt;data.frame [132 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"72"},{"1":"13","2":"7","3":"8","4":"&lt;data.frame [93 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"73"},{"1":"14","2":"7","3":"8","4":"&lt;data.frame [74 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"74"},{"1":"15","2":"8","3":"8","4":"&lt;data.frame [74 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"75"},{"1":"16","2":"8","3":"8","4":"&lt;data.frame [114 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"76"},{"1":"16","2":"8","3":"8","4":"&lt;data.frame [117 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"77"},{"1":"17","2":"9","3":"8","4":"&lt;data.frame [106 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"78"},{"1":"18","2":"9","3":"8","4":"&lt;data.frame [97 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"79"},{"1":"19","2":"10","3":"8","4":"&lt;data.frame [89 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"80"},{"1":"20","2":"10","3":"8","4":"&lt;data.frame [78 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"81"},{"1":"22","2":"11","3":"8","4":"&lt;data.frame [132 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"82"},{"1":"23","2":"11","3":"8","4":"&lt;data.frame [132 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"83"},{"1":"24","2":"12","3":"8","4":"&lt;data.frame [104 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"84"},{"1":"25","2":"12","3":"8","4":"&lt;data.frame [138 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"85"},{"1":"26","2":"13","3":"8","4":"&lt;data.frame [142 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"86"},{"1":"27","2":"13","3":"8","4":"&lt;data.frame [159 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"87"},{"1":"28","2":"14","3":"8","4":"&lt;data.frame [136 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"88"},{"1":"29","2":"14","3":"8","4":"&lt;data.frame [140 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"89"},{"1":"30","2":"15","3":"8","4":"&lt;data.frame [110 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"90"},{"1":"31","2":"15","3":"8","4":"&lt;data.frame [153 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"91"},{"1":"32","2":"16","3":"8","4":"&lt;data.frame [109 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"92"},{"1":"33","2":"16","3":"8","4":"&lt;data.frame [109 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"93"},{"1":"34","2":"17","3":"8","4":"&lt;data.frame [153 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"94"},{"1":"35","2":"17","3":"8","4":"&lt;data.frame [158 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"95"},{"1":"36","2":"18","3":"8","4":"&lt;data.frame [182 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"96"},{"1":"37","2":"18","3":"8","4":"&lt;data.frame [176 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"97"},{"1":"38","2":"19","3":"8","4":"&lt;data.frame [135 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"98"},{"1":"39","2":"19","3":"8","4":"&lt;data.frame [122 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"99"},{"1":"40","2":"20","3":"8","4":"&lt;data.frame [182 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"100"},{"1":"41","2":"20","3":"8","4":"&lt;data.frame [121 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"101"},{"1":"42","2":"21","3":"8","4":"&lt;data.frame [146 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"102"},{"1":"43","2":"21","3":"8","4":"&lt;data.frame [118 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"103"},{"1":"44","2":"22","3":"8","4":"&lt;data.frame [104 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"104"},{"1":"45","2":"22","3":"8","4":"&lt;data.frame [106 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"105"},{"1":"45","2":"22","3":"8","4":"&lt;data.frame [92 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"106"},{"1":"46","2":"23","3":"8","4":"&lt;data.frame [121 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"107"},{"1":"47","2":"23","3":"8","4":"&lt;data.frame [150 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"108"},{"1":"48","2":"24","3":"8","4":"&lt;data.frame [109 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"109"},{"1":"49","2":"24","3":"8","4":"&lt;data.frame [124 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"110"},{"1":"50","2":"25","3":"8","4":"&lt;data.frame [152 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"111"},{"1":"51","2":"25","3":"8","4":"&lt;data.frame [173 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"112"},{"1":"52","2":"26","3":"8","4":"&lt;data.frame [182 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"113"},{"1":"53","2":"26","3":"8","4":"&lt;data.frame [102 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"114"},{"1":"54","2":"27","3":"8","4":"&lt;data.frame [98 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"115"},{"1":"55","2":"27","3":"8","4":"&lt;data.frame [101 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"116"},{"1":"56","2":"28","3":"8","4":"&lt;data.frame [138 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"117"},{"1":"57","2":"28","3":"8","4":"&lt;data.frame [121 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"118"},{"1":"58","2":"29","3":"8","4":"&lt;data.frame [175 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"119"},{"1":"59","2":"29","3":"8","4":"&lt;data.frame [134 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"120"},{"1":"60","2":"30","3":"8","4":"&lt;data.frame [151 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"121"},{"1":"61","2":"30","3":"8","4":"&lt;data.frame [128 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_STAND","6":"122"},{"1":"1","2":"1","3":"9","4":"&lt;data.frame [192 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"123"},{"1":"2","2":"1","3":"9","4":"&lt;data.frame [237 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"124"},{"1":"3","2":"2","3":"9","4":"&lt;data.frame [225 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"125"},{"1":"4","2":"2","3":"9","4":"&lt;data.frame [154 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"126"},{"1":"5","2":"3","3":"9","4":"&lt;data.frame [151 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"127"},{"1":"6","2":"3","3":"9","4":"&lt;data.frame [170 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"128"},{"1":"7","2":"4","3":"9","4":"&lt;data.frame [224 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"129"},{"1":"8","2":"4","3":"9","4":"&lt;data.frame [235 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"130"},{"1":"9","2":"5","3":"9","4":"&lt;data.frame [220 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"131"},{"1":"10","2":"5","3":"9","4":"&lt;data.frame [259 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"132"},{"1":"11","2":"6","3":"9","4":"&lt;data.frame [158 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"133"},{"1":"12","2":"6","3":"9","4":"&lt;data.frame [158 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"134"},{"1":"13","2":"7","3":"9","4":"&lt;data.frame [257 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"135"},{"1":"14","2":"7","3":"9","4":"&lt;data.frame [189 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"136"},{"1":"15","2":"8","3":"9","4":"&lt;data.frame [166 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"137"},{"1":"16","2":"8","3":"9","4":"&lt;data.frame [147 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"138"},{"1":"17","2":"9","3":"9","4":"&lt;data.frame [204 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"139"},{"1":"18","2":"9","3":"9","4":"&lt;data.frame [161 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"140"},{"1":"19","2":"10","3":"9","4":"&lt;data.frame [181 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"141"},{"1":"20","2":"10","3":"9","4":"&lt;data.frame [159 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"142"},{"1":"22","2":"11","3":"9","4":"&lt;data.frame [185 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"143"},{"1":"23","2":"11","3":"9","4":"&lt;data.frame [198 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"144"},{"1":"24","2":"12","3":"9","4":"&lt;data.frame [173 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"145"},{"1":"25","2":"12","3":"9","4":"&lt;data.frame [182 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"146"},{"1":"26","2":"13","3":"9","4":"&lt;data.frame [226 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"147"},{"1":"27","2":"13","3":"9","4":"&lt;data.frame [212 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"148"},{"1":"28","2":"14","3":"9","4":"&lt;data.frame [289 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"149"},{"1":"29","2":"14","3":"9","4":"&lt;data.frame [172 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"150"},{"1":"30","2":"15","3":"9","4":"&lt;data.frame [202 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"151"},{"1":"31","2":"15","3":"9","4":"&lt;data.frame [205 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"152"},{"1":"32","2":"16","3":"9","4":"&lt;data.frame [195 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"153"},{"1":"33","2":"16","3":"9","4":"&lt;data.frame [181 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"154"},{"1":"34","2":"17","3":"9","4":"&lt;data.frame [312 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"155"},{"1":"35","2":"17","3":"9","4":"&lt;data.frame [202 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"156"},{"1":"36","2":"18","3":"9","4":"&lt;data.frame [251 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"157"},{"1":"37","2":"18","3":"9","4":"&lt;data.frame [199 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"158"},{"1":"38","2":"19","3":"9","4":"&lt;data.frame [176 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"159"},{"1":"39","2":"19","3":"9","4":"&lt;data.frame [203 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"160"},{"1":"40","2":"20","3":"9","4":"&lt;data.frame [297 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"161"},{"1":"41","2":"20","3":"9","4":"&lt;data.frame [281 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"162"},{"1":"42","2":"21","3":"9","4":"&lt;data.frame [202 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"163"},{"1":"43","2":"21","3":"9","4":"&lt;data.frame [212 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"164"},{"1":"44","2":"22","3":"9","4":"&lt;data.frame [136 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"165"},{"1":"45","2":"22","3":"9","4":"&lt;data.frame [159 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"166"},{"1":"46","2":"23","3":"9","4":"&lt;data.frame [213 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"167"},{"1":"47","2":"23","3":"9","4":"&lt;data.frame [219 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"168"},{"1":"48","2":"24","3":"9","4":"&lt;data.frame [234 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"169"},{"1":"49","2":"24","3":"9","4":"&lt;data.frame [206 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"170"},{"1":"50","2":"25","3":"9","4":"&lt;data.frame [199 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"171"},{"1":"51","2":"25","3":"9","4":"&lt;data.frame [181 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"172"},{"1":"52","2":"26","3":"9","4":"&lt;data.frame [185 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"173"},{"1":"53","2":"26","3":"9","4":"&lt;data.frame [213 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"174"},{"1":"54","2":"27","3":"9","4":"&lt;data.frame [227 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"175"},{"1":"55","2":"27","3":"9","4":"&lt;data.frame [225 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"176"},{"1":"56","2":"28","3":"9","4":"&lt;data.frame [226 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"177"},{"1":"57","2":"28","3":"9","4":"&lt;data.frame [201 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"178"},{"1":"58","2":"29","3":"9","4":"&lt;data.frame [326 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"179"},{"1":"59","2":"29","3":"9","4":"&lt;data.frame [201 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"180"},{"1":"60","2":"30","3":"9","4":"&lt;data.frame [183 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"181"},{"1":"61","2":"30","3":"9","4":"&lt;data.frame [292 &lt;U+00D7&gt; 6]&gt;","5":"SIT_TO_LIE","6":"182"},{"1":"1","2":"1","3":"10","4":"&lt;data.frame [197 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"183"},{"1":"2","2":"1","3":"10","4":"&lt;data.frame [184 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"184"},{"1":"3","2":"2","3":"10","4":"&lt;data.frame [278 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"185"},{"1":"4","2":"2","3":"10","4":"&lt;data.frame [142 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"186"},{"1":"5","2":"3","3":"10","4":"&lt;data.frame [224 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"187"},{"1":"6","2":"3","3":"10","4":"&lt;data.frame [197 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"188"},{"1":"7","2":"4","3":"10","4":"&lt;data.frame [215 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"189"},{"1":"8","2":"4","3":"10","4":"&lt;data.frame [210 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"190"},{"1":"9","2":"5","3":"10","4":"&lt;data.frame [256 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"191"},{"1":"10","2":"5","3":"10","4":"&lt;data.frame [203 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"192"},{"1":"11","2":"6","3":"10","4":"&lt;data.frame [173 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"193"},{"1":"12","2":"6","3":"10","4":"&lt;data.frame [165 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"194"},{"1":"13","2":"7","3":"10","4":"&lt;data.frame [146 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"195"},{"1":"14","2":"7","3":"10","4":"&lt;data.frame [123 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"196"},{"1":"15","2":"8","3":"10","4":"&lt;data.frame [160 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"197"},{"1":"16","2":"8","3":"10","4":"&lt;data.frame [136 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"198"},{"1":"16","2":"8","3":"10","4":"&lt;data.frame [165 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"199"},{"1":"17","2":"9","3":"10","4":"&lt;data.frame [177 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"200"},{"1":"18","2":"9","3":"10","4":"&lt;data.frame [128 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"201"},{"1":"19","2":"10","3":"10","4":"&lt;data.frame [169 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"202"},{"1":"20","2":"10","3":"10","4":"&lt;data.frame [114 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"203"},{"1":"22","2":"11","3":"10","4":"&lt;data.frame [179 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"204"},{"1":"23","2":"11","3":"10","4":"&lt;data.frame [222 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"205"},{"1":"24","2":"12","3":"10","4":"&lt;data.frame [178 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"206"},{"1":"25","2":"12","3":"10","4":"&lt;data.frame [179 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"207"},{"1":"26","2":"13","3":"10","4":"&lt;data.frame [190 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"208"},{"1":"27","2":"13","3":"10","4":"&lt;data.frame [193 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"209"},{"1":"28","2":"14","3":"10","4":"&lt;data.frame [226 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"210"},{"1":"29","2":"14","3":"10","4":"&lt;data.frame [147 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"211"},{"1":"30","2":"15","3":"10","4":"&lt;data.frame [166 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"212"},{"1":"31","2":"15","3":"10","4":"&lt;data.frame [169 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"213"},{"1":"32","2":"16","3":"10","4":"&lt;data.frame [184 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"214"},{"1":"33","2":"16","3":"10","4":"&lt;data.frame [183 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"215"},{"1":"34","2":"17","3":"10","4":"&lt;data.frame [211 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"216"},{"1":"35","2":"17","3":"10","4":"&lt;data.frame [271 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"217"},{"1":"36","2":"18","3":"10","4":"&lt;data.frame [245 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"218"},{"1":"37","2":"18","3":"10","4":"&lt;data.frame [165 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"219"},{"1":"38","2":"19","3":"10","4":"&lt;data.frame [197 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"220"},{"1":"39","2":"19","3":"10","4":"&lt;data.frame [150 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"221"},{"1":"40","2":"20","3":"10","4":"&lt;data.frame [156 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"222"},{"1":"41","2":"20","3":"10","4":"&lt;data.frame [192 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"223"},{"1":"42","2":"21","3":"10","4":"&lt;data.frame [204 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"224"},{"1":"43","2":"21","3":"10","4":"&lt;data.frame [196 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"225"},{"1":"44","2":"22","3":"10","4":"&lt;data.frame [185 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"226"},{"1":"45","2":"22","3":"10","4":"&lt;data.frame [161 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"227"},{"1":"45","2":"22","3":"10","4":"&lt;data.frame [157 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"228"},{"1":"46","2":"23","3":"10","4":"&lt;data.frame [174 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"229"},{"1":"47","2":"23","3":"10","4":"&lt;data.frame [171 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"230"},{"1":"48","2":"24","3":"10","4":"&lt;data.frame [210 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"231"},{"1":"49","2":"24","3":"10","4":"&lt;data.frame [180 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"232"},{"1":"50","2":"25","3":"10","4":"&lt;data.frame [280 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"233"},{"1":"51","2":"25","3":"10","4":"&lt;data.frame [215 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"234"},{"1":"52","2":"26","3":"10","4":"&lt;data.frame [162 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"235"},{"1":"53","2":"26","3":"10","4":"&lt;data.frame [174 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"236"},{"1":"54","2":"27","3":"10","4":"&lt;data.frame [154 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"237"},{"1":"55","2":"27","3":"10","4":"&lt;data.frame [149 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"238"},{"1":"58","2":"29","3":"10","4":"&lt;data.frame [237 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"239"},{"1":"59","2":"29","3":"10","4":"&lt;data.frame [170 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"240"},{"1":"60","2":"30","3":"10","4":"&lt;data.frame [167 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"241"},{"1":"61","2":"30","3":"10","4":"&lt;data.frame [239 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_SIT","6":"242"},{"1":"1","2":"1","3":"11","4":"&lt;data.frame [288 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"243"},{"1":"2","2":"1","3":"11","4":"&lt;data.frame [268 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"244"},{"1":"3","2":"2","3":"11","4":"&lt;data.frame [418 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"245"},{"1":"4","2":"2","3":"11","4":"&lt;data.frame [205 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"246"},{"1":"5","2":"3","3":"11","4":"&lt;data.frame [216 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"247"},{"1":"6","2":"3","3":"11","4":"&lt;data.frame [235 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"248"},{"1":"7","2":"4","3":"11","4":"&lt;data.frame [332 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"249"},{"1":"8","2":"4","3":"11","4":"&lt;data.frame [319 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"250"},{"1":"9","2":"5","3":"11","4":"&lt;data.frame [346 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"251"},{"1":"10","2":"5","3":"11","4":"&lt;data.frame [315 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"252"},{"1":"11","2":"6","3":"11","4":"&lt;data.frame [313 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"253"},{"1":"12","2":"6","3":"11","4":"&lt;data.frame [280 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"254"},{"1":"13","2":"7","3":"11","4":"&lt;data.frame [206 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"255"},{"1":"14","2":"7","3":"11","4":"&lt;data.frame [200 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"256"},{"1":"15","2":"8","3":"11","4":"&lt;data.frame [211 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"257"},{"1":"16","2":"8","3":"11","4":"&lt;data.frame [196 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"258"},{"1":"17","2":"9","3":"11","4":"&lt;data.frame [188 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"259"},{"1":"18","2":"9","3":"11","4":"&lt;data.frame [259 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"260"},{"1":"19","2":"10","3":"11","4":"&lt;data.frame [229 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"261"},{"1":"20","2":"10","3":"11","4":"&lt;data.frame [153 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"262"},{"1":"22","2":"11","3":"11","4":"&lt;data.frame [193 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"263"},{"1":"23","2":"11","3":"11","4":"&lt;data.frame [187 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"264"},{"1":"24","2":"12","3":"11","4":"&lt;data.frame [205 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"265"},{"1":"25","2":"12","3":"11","4":"&lt;data.frame [167 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"266"},{"1":"26","2":"13","3":"11","4":"&lt;data.frame [195 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"267"},{"1":"27","2":"13","3":"11","4":"&lt;data.frame [191 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"268"},{"1":"28","2":"14","3":"11","4":"&lt;data.frame [342 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"269"},{"1":"29","2":"14","3":"11","4":"&lt;data.frame [264 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"270"},{"1":"30","2":"15","3":"11","4":"&lt;data.frame [194 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"271"},{"1":"31","2":"15","3":"11","4":"&lt;data.frame [263 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"272"},{"1":"32","2":"16","3":"11","4":"&lt;data.frame [235 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"273"},{"1":"33","2":"16","3":"11","4":"&lt;data.frame [192 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"274"},{"1":"34","2":"17","3":"11","4":"&lt;data.frame [238 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"275"},{"1":"35","2":"17","3":"11","4":"&lt;data.frame [336 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"276"},{"1":"36","2":"18","3":"11","4":"&lt;data.frame [297 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"277"},{"1":"37","2":"18","3":"11","4":"&lt;data.frame [244 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"278"},{"1":"38","2":"19","3":"11","4":"&lt;data.frame [256 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"279"},{"1":"39","2":"19","3":"11","4":"&lt;data.frame [320 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"280"},{"1":"40","2":"20","3":"11","4":"&lt;data.frame [425 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"281"},{"1":"41","2":"20","3":"11","4":"&lt;data.frame [365 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"282"},{"1":"42","2":"21","3":"11","4":"&lt;data.frame [313 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"283"},{"1":"43","2":"21","3":"11","4":"&lt;data.frame [274 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"284"},{"1":"44","2":"22","3":"11","4":"&lt;data.frame [173 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"285"},{"1":"45","2":"22","3":"11","4":"&lt;data.frame [139 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"286"},{"1":"46","2":"23","3":"11","4":"&lt;data.frame [253 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"287"},{"1":"47","2":"23","3":"11","4":"&lt;data.frame [260 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"288"},{"1":"48","2":"24","3":"11","4":"&lt;data.frame [494 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"289"},{"1":"49","2":"24","3":"11","4":"&lt;data.frame [248 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"290"},{"1":"50","2":"25","3":"11","4":"&lt;data.frame [185 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"291"},{"1":"51","2":"25","3":"11","4":"&lt;data.frame [241 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"292"},{"1":"52","2":"26","3":"11","4":"&lt;data.frame [178 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"293"},{"1":"53","2":"26","3":"11","4":"&lt;data.frame [167 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"294"},{"1":"54","2":"27","3":"11","4":"&lt;data.frame [216 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"295"},{"1":"55","2":"27","3":"11","4":"&lt;data.frame [165 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"296"},{"1":"58","2":"29","3":"11","4":"&lt;data.frame [234 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"297"},{"1":"59","2":"29","3":"11","4":"&lt;data.frame [187 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"298"},{"1":"60","2":"30","3":"11","4":"&lt;data.frame [156 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"299"},{"1":"61","2":"30","3":"11","4":"&lt;data.frame [249 &lt;U+00D7&gt; 6]&gt;","5":"STAND_TO_LIE","6":"300"},{"1":"1","2":"1","3":"12","4":"&lt;data.frame [191 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"301"},{"1":"2","2":"1","3":"12","4":"&lt;data.frame [242 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"302"},{"1":"3","2":"2","3":"12","4":"&lt;data.frame [181 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"303"},{"1":"4","2":"2","3":"12","4":"&lt;data.frame [181 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"304"},{"1":"5","2":"3","3":"12","4":"&lt;data.frame [184 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"305"},{"1":"6","2":"3","3":"12","4":"&lt;data.frame [167 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"306"},{"1":"7","2":"4","3":"12","4":"&lt;data.frame [166 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"307"},{"1":"8","2":"4","3":"12","4":"&lt;data.frame [171 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"308"},{"1":"9","2":"5","3":"12","4":"&lt;data.frame [173 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"309"},{"1":"10","2":"5","3":"12","4":"&lt;data.frame [142 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"310"},{"1":"11","2":"6","3":"12","4":"&lt;data.frame [186 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"311"},{"1":"12","2":"6","3":"12","4":"&lt;data.frame [254 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"312"},{"1":"13","2":"7","3":"12","4":"&lt;data.frame [206 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"313"},{"1":"14","2":"7","3":"12","4":"&lt;data.frame [170 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"314"},{"1":"15","2":"8","3":"12","4":"&lt;data.frame [173 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"315"},{"1":"17","2":"9","3":"12","4":"&lt;data.frame [168 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"316"},{"1":"18","2":"9","3":"12","4":"&lt;data.frame [149 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"317"},{"1":"19","2":"10","3":"12","4":"&lt;data.frame [118 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"318"},{"1":"20","2":"10","3":"12","4":"&lt;data.frame [137 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"319"},{"1":"22","2":"11","3":"12","4":"&lt;data.frame [139 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"320"},{"1":"23","2":"11","3":"12","4":"&lt;data.frame [196 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"321"},{"1":"24","2":"12","3":"12","4":"&lt;data.frame [207 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"322"},{"1":"25","2":"12","3":"12","4":"&lt;data.frame [188 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"323"},{"1":"26","2":"13","3":"12","4":"&lt;data.frame [259 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"324"},{"1":"27","2":"13","3":"12","4":"&lt;data.frame [197 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"325"},{"1":"28","2":"14","3":"12","4":"&lt;data.frame [289 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"326"},{"1":"29","2":"14","3":"12","4":"&lt;data.frame [197 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"327"},{"1":"30","2":"15","3":"12","4":"&lt;data.frame [201 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"328"},{"1":"31","2":"15","3":"12","4":"&lt;data.frame [159 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"329"},{"1":"32","2":"16","3":"12","4":"&lt;data.frame [146 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"330"},{"1":"33","2":"16","3":"12","4":"&lt;data.frame [156 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"331"},{"1":"34","2":"17","3":"12","4":"&lt;data.frame [200 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"332"},{"1":"35","2":"17","3":"12","4":"&lt;data.frame [238 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"333"},{"1":"36","2":"18","3":"12","4":"&lt;data.frame [206 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"334"},{"1":"37","2":"18","3":"12","4":"&lt;data.frame [192 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"335"},{"1":"38","2":"19","3":"12","4":"&lt;data.frame [161 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"336"},{"1":"39","2":"19","3":"12","4":"&lt;data.frame [140 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"337"},{"1":"40","2":"20","3":"12","4":"&lt;data.frame [172 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"338"},{"1":"41","2":"20","3":"12","4":"&lt;data.frame [158 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"339"},{"1":"42","2":"21","3":"12","4":"&lt;data.frame [206 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"340"},{"1":"43","2":"21","3":"12","4":"&lt;data.frame [196 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"341"},{"1":"44","2":"22","3":"12","4":"&lt;data.frame [257 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"342"},{"1":"46","2":"23","3":"12","4":"&lt;data.frame [176 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"343"},{"1":"47","2":"23","3":"12","4":"&lt;data.frame [161 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"344"},{"1":"48","2":"24","3":"12","4":"&lt;data.frame [322 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"345"},{"1":"49","2":"24","3":"12","4":"&lt;data.frame [196 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"346"},{"1":"50","2":"25","3":"12","4":"&lt;data.frame [323 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"347"},{"1":"51","2":"25","3":"12","4":"&lt;data.frame [187 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"348"},{"1":"52","2":"26","3":"12","4":"&lt;data.frame [244 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"349"},{"1":"53","2":"26","3":"12","4":"&lt;data.frame [183 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"350"},{"1":"54","2":"27","3":"12","4":"&lt;data.frame [125 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"351"},{"1":"55","2":"27","3":"12","4":"&lt;data.frame [153 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"352"},{"1":"56","2":"28","3":"12","4":"&lt;data.frame [181 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"353"},{"1":"57","2":"28","3":"12","4":"&lt;data.frame [167 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"354"},{"1":"58","2":"29","3":"12","4":"&lt;data.frame [179 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"355"},{"1":"59","2":"29","3":"12","4":"&lt;data.frame [145 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"356"},{"1":"60","2":"30","3":"12","4":"&lt;data.frame [159 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"357"},{"1":"61","2":"30","3":"12","4":"&lt;data.frame [147 &lt;U+00D7&gt; 6]&gt;","5":"LIE_TO_STAND","6":"358"}],"options":{"columns":{"min":{},"max":[10]},"rows":{"min":[10],"max":[10]},"pages":{}}}
  305. &lt;/script&gt;
  306. &lt;/div&gt;
  307. ---
  308. ## Разделим на трейн тест
  309. ```r
  310. set.seed(100) # seed for reproducibility
  311. ## get all users
  312. userIds &lt;- allObservations$userId %&gt;% unique()
  313. ## randomly choose 24 (80% of 30 individuals) for training
  314. trainIds &lt;- sample(userIds, size = 24)
  315. ## set the rest of the users to the testing set
  316. testIds &lt;- setdiff(userIds,trainIds)
  317. ## filter data.
  318. trainData &lt;- filteredObservations %&gt;%
  319. filter(userId %in% trainIds)
  320. testData &lt;- filteredObservations %&gt;%
  321. filter(userId %in% testIds)
  322. ```
  323. ---
  324. layout: true
  325. ## Посмотрим на графики активности по классам
  326. ---
  327. ```r
  328. unpackedObs &lt;- 1:nrow(trainData) %&gt;%
  329. map_df(function(rowNum){
  330. dataRow &lt;- trainData[rowNum, ]
  331. dataRow$data[[1]] %&gt;%
  332. mutate(
  333. activityName = dataRow$activityName,
  334. observationId = dataRow$observationId,
  335. time = 1:n() )
  336. }) %&gt;%
  337. gather(reading, value, -time, -activityName, -observationId) %&gt;%
  338. separate(reading, into = c("type", "direction"), sep = "_") %&gt;%
  339. mutate(type = ifelse(type == "a", "acceleration", "gyro"))
  340. ```
  341. ---
  342. ```r
  343. unpackedObs %&gt;%
  344. ggplot(aes(x = time, y = value, color = direction)) +
  345. geom_line(alpha = 0.2) +
  346. geom_smooth(se = FALSE, alpha = 0.7, size = 0.5) +
  347. facet_grid(type ~ activityName, scales = "free_y") +
  348. theme_minimal() +
  349. theme( axis.text.x = element_blank() )
  350. ```
  351. &lt;img src="Deep_Learning_in_R_files/figure-html/unnamed-chunk-17-1.svg" style="display: block; margin: auto;" /&gt;
  352. ---
  353. layout: true
  354. ## Подготовка данных к обучению
  355. ---
  356. ```r
  357. padSize &lt;- trainData$data %&gt;%
  358. map_int(nrow) %&gt;%
  359. quantile(p = 0.98) %&gt;%
  360. ceiling()
  361. padSize
  362. ```
  363. ```
  364. ## 98%
  365. ## 334
  366. ```
  367. ```r
  368. convertToTensor &lt;- . %&gt;%
  369. map(as.matrix) %&gt;%
  370. pad_sequences(maxlen = padSize)
  371. trainObs &lt;- trainData$data %&gt;% convertToTensor()
  372. testObs &lt;- testData$data %&gt;% convertToTensor()
  373. dim(trainObs)
  374. ```
  375. ```
  376. ## [1] 286 334 6
  377. ```
  378. ---
  379. ```r
  380. # one hot encoding
  381. oneHotClasses &lt;- . %&gt;%
  382. {. - 7} %&gt;% # bring integers down to 0-6 from 7-12
  383. to_categorical() # One-hot encode
  384. trainY &lt;- trainData$activity %&gt;% oneHotClasses()
  385. testY &lt;- testData$activity %&gt;% oneHotClasses()
  386. ```
  387. ---
  388. layout:true
  389. ## Наконец то сетка!
  390. ---
  391. ```r
  392. input_shape &lt;- dim(trainObs)[-1]
  393. num_classes &lt;- dim(trainY)[2]
  394. filters &lt;- 24 # number of convolutional filters to learn
  395. kernel_size &lt;- 8 # how many time-steps each conv layer sees.
  396. dense_size &lt;- 48 # size of our penultimate dense layer.
  397. ```
  398. ---
  399. ```r
  400. model &lt;- keras_model_sequential() # define type of class model
  401. model %&gt;% layer_conv_1d( # add first convolutions layer
  402. filters = filters, # num of filters
  403. kernel_size = kernel_size, # kernel size
  404. input_shape = input_shape,
  405. padding = "valid", # to fill padding with zero
  406. activation = "relu") %&gt;% # activation fiucntion on the end of layer
  407. layer_batch_normalization() %&gt;% # batch norm
  408. layer_spatial_dropout_1d(0.15) %&gt;% # dropout 15% neurons
  409. layer_conv_1d(filters = filters/2, # second convolution layer with half of num filters
  410. kernel_size = kernel_size,
  411. activation = "relu") %&gt;%
  412. layer_global_average_pooling_1d() %&gt;% # to average all verctor representation in one featuremap
  413. layer_batch_normalization() %&gt;%
  414. layer_dropout(0.2) %&gt;% # dropout 20% neurons
  415. layer_dense(dense_size, # fullyconected layer perceptron
  416. activation = "relu") %&gt;%
  417. layer_batch_normalization() %&gt;%
  418. layer_dropout(0.25) %&gt;%
  419. layer_dense(num_classes, # one more fully connected layer size of num classes
  420. activation = "softmax", # our loss function for multyply classification
  421. name = "dense_output")
  422. ```
  423. ---
  424. ### Выведем описание нашей сетки
  425. ```r
  426. summary(model)
  427. ```
  428. ![](Deep_Learning_in_R_files/keras_summary.png)
  429. ---
  430. layout:true
  431. ## Обучим же наконец
  432. ---
  433. ## Компиляция графа
  434. ```r
  435. model %&gt;% compile(
  436. loss = "categorical_crossentropy", # our loss function
  437. optimizer = "rmsprop", # our optimizer alrorithm
  438. metrics = "accuracy" # our metric
  439. )
  440. ```
  441. ---
  442. ## train
  443. ```r
  444. trainHistory &lt;- model %&gt;%
  445. fit(
  446. x = trainObs, y = trainY, # data
  447. epochs = 350, # num epoch
  448. validation_data = list(testObs, testY), # validation tests on each epoch
  449. callbacks = list(
  450. callback_model_checkpoint("best_model.h5",
  451. save_best_only = TRUE))) # update train history and save model
  452. ```
  453. ---
  454. ![](Deep_Learning_in_R_files/train.png)
  455. ---
  456. ![](Deep_Learning_in_R_files/train_plot2.png)
  457. ---
  458. layout:true
  459. ## Предсказание
  460. ---
  461. ## Подготовка теста
  462. ```r
  463. # one-hot ecnoding labels for predict
  464. oneHotToLabel &lt;- activityLabels %&gt;%
  465. mutate(number = number - 7) %&gt;%
  466. filter(number &gt;= 0) %&gt;%
  467. mutate(class = paste0("V",number + 1)) %&gt;%
  468. select(-number)
  469. ```
  470. ## Выбор лучшей модели
  471. ```r
  472. bestModel &lt;- load_model_hdf5("best_model.h5")
  473. ```
  474. ---
  475. ## Еще немного кода
  476. ```r
  477. tidyPredictionProbs &lt;- bestModel %&gt;%
  478. predict(testObs) %&gt;%
  479. as_data_frame() %&gt;%
  480. mutate(obs = 1:n()) %&gt;%
  481. gather(class, prob, -obs) %&gt;%
  482. right_join(oneHotToLabel, by = "class")
  483. predictionPerformance &lt;- tidyPredictionProbs %&gt;%
  484. group_by(obs) %&gt;%
  485. summarise(
  486. highestProb = max(prob),
  487. predicted = label[prob == highestProb]
  488. ) %&gt;%
  489. mutate(
  490. truth = testData$activityName,
  491. correct = truth == predicted
  492. )
  493. ```
  494. ---
  495. ```r
  496. predictionPerformance %&gt;% paged_table()
  497. ```
  498. &lt;div data-pagedtable="false"&gt;
  499. &lt;script data-pagedtable-source type="application/json"&gt;
  500. {"columns":[{"label":["obs"],"name":[1],"type":["int"],"align":["right"]},{"label":["highestProb"],"name":[2],"type":["dbl"],"align":["right"]},{"label":["predicted"],"name":[3],"type":["fctr"],"align":["left"]},{"label":["truth"],"name":[4],"type":["fctr"],"align":["left"]},{"label":["correct"],"name":[5],"type":["lgl"],"align":["right"]}],"data":[{"1":"1","2":"0.5235093","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"2","2":"0.7429348","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"3","2":"0.9417344","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"4","2":"0.9636050","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"5","2":"0.9972581","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"6","2":"0.9886600","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"7","2":"0.8171908","3":"SIT_TO_STAND","4":"STAND_TO_SIT","5":"FALSE"},{"1":"8","2":"0.9819133","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"9","2":"0.9207168","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"10","2":"0.5373349","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"11","2":"0.9969481","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"12","2":"0.9679638","3":"STAND_TO_SIT","4":"STAND_TO_SIT","5":"TRUE"},{"1":"13","2":"0.9976879","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"14","2":"0.9947354","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"15","2":"0.9846317","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"16","2":"0.9583181","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"17","2":"0.9918798","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"18","2":"0.9962373","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"19","2":"0.5915999","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"20","2":"0.9856395","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"21","2":"0.9853276","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"22","2":"0.6484483","3":"LIE_TO_STAND","4":"SIT_TO_STAND","5":"FALSE"},{"1":"23","2":"0.9904292","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"24","2":"0.9951174","3":"SIT_TO_STAND","4":"SIT_TO_STAND","5":"TRUE"},{"1":"25","2":"0.9345155","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"26","2":"0.9346985","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"27","2":"0.8282700","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"28","2":"0.4446574","3":"STAND_TO_LIE","4":"SIT_TO_LIE","5":"FALSE"},{"1":"29","2":"0.9600595","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"30","2":"0.9273394","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"31","2":"0.4244703","3":"STAND_TO_LIE","4":"SIT_TO_LIE","5":"FALSE"},{"1":"32","2":"0.8656624","3":"STAND_TO_LIE","4":"SIT_TO_LIE","5":"FALSE"},{"1":"33","2":"0.9675164","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"34","2":"0.9878884","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"35","2":"0.9726661","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"36","2":"0.9835377","3":"SIT_TO_LIE","4":"SIT_TO_LIE","5":"TRUE"},{"1":"37","2":"0.8140901","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"38","2":"0.8645245","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"39","2":"0.9283405","3":"LIE_TO_STAND","4":"LIE_TO_SIT","5":"FALSE"},{"1":"40","2":"0.9598847","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"41","2":"0.9766055","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"42","2":"0.6702896","3":"LIE_TO_STAND","4":"LIE_TO_SIT","5":"FALSE"},{"1":"43","2":"0.7475867","3":"STAND_TO_SIT","4":"LIE_TO_SIT","5":"FALSE"},{"1":"44","2":"0.6041491","3":"SIT_TO_STAND","4":"LIE_TO_SIT","5":"FALSE"},{"1":"45","2":"0.9565383","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"46","2":"0.7668063","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"47","2":"0.9975970","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"48","2":"0.9129800","3":"LIE_TO_SIT","4":"LIE_TO_SIT","5":"TRUE"},{"1":"49","2":"0.5405371","3":"STAND_TO_SIT","4":"STAND_TO_LIE","5":"FALSE"},{"1":"50","2":"0.3918574","3":"LIE_TO_STAND","4":"STAND_TO_LIE","5":"FALSE"},{"1":"51","2":"0.6076084","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"52","2":"0.7430704","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"53","2":"0.9855121","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"54","2":"0.6805021","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"55","2":"0.9350494","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"56","2":"0.6553332","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"57","2":"0.9363784","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"58","2":"0.9984127","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"59","2":"0.9998779","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"60","2":"0.9920494","3":"STAND_TO_LIE","4":"STAND_TO_LIE","5":"TRUE"},{"1":"61","2":"0.8970848","3":"LIE_TO_STAND","4":"LIE_TO_STAND","5":"TRUE"},{"1":"62","2":"0.9540750","3":"LIE_TO_STAND","4":"LIE_TO_STAND","5":"TRUE"},{"1":"63","2":"0.7527739","3":"LIE_TO_SIT","4":"LIE_TO_STAND","5":"FALSE"},{"1":"64","2":"0.5927992","3":"LIE_TO_SIT","4":"LIE_TO_STAND","5":"FALSE"},{"1":"65","2":"0.8900657","3":"LIE_TO_STAND","4":"LIE_TO_STAND","5":"TRUE"},{"1":"66","2":"0.9679322","3":"LIE_TO_STAND","4":"LIE_TO_STAND","5":"TRUE"},{"1":"67","2":"0.4529986","3":"SIT_TO_STAND","4":"LIE_TO_STAND","5":"FALSE"},{"1":"68","2":"0.8696935","3":"SIT_TO_LIE","4":"LIE_TO_STAND","5":"FALSE"},{"1":"69","2":"0.6704690","3":"SIT_TO_STAND","4":"LIE_TO_STAND","5":"FALSE"},{"1":"70","2":"0.7199435","3":"LIE_TO_SIT","4":"LIE_TO_STAND","5":"FALSE"},{"1":"71","2":"0.6397786","3":"LIE_TO_STAND","4":"LIE_TO_STAND","5":"TRUE"},{"1":"72","2":"0.7789361","3":"LIE_TO_STAND","4":"LIE_TO_STAND","5":"TRUE"}],"options":{"columns":{"min":{},"max":[10]},"rows":{"min":[10],"max":[10]},"pages":{}}}
  501. &lt;/script&gt;
  502. &lt;/div&gt;
  503. ---
  504. layout:true
  505. ## Визуализация ошибок
  506. ---
  507. ```r
  508. predictionPerformance %&gt;%
  509. mutate(result = ifelse(correct, 'Correct', 'Incorrect')) %&gt;%
  510. ggplot(aes(highestProb)) +
  511. geom_histogram(binwidth = 0.01) +
  512. geom_rug(alpha = 0.5) +
  513. facet_grid(result~.) +
  514. ggtitle("Probabilities associated with prediction by correctness")
  515. ```
  516. ![](Deep_Learning_in_R_files/figure-html/unnamed-chunk-28-1.png)&lt;!-- --&gt;
  517. ---
  518. ```r
  519. predictionPerformance %&gt;%
  520. group_by(truth, predicted) %&gt;%
  521. summarise(count = n()) %&gt;%
  522. mutate(good = truth == predicted) %&gt;%
  523. ggplot(aes(x = truth, y = predicted)) +
  524. geom_point(aes(size = count, color = good)) +
  525. geom_text(aes(label = count),
  526. hjust = 0, vjust = 0,
  527. nudge_x = 0.1, nudge_y = 0.1) +
  528. guides(color = FALSE, size = FALSE) +
  529. theme_minimal()
  530. ```
  531. ![](Deep_Learning_in_R_files/figure-html/unnamed-chunk-29-1.png)&lt;!-- --&gt;
  532. ---
  533. layout:false
  534. class: inverse, middle, center
  535. # Заключение
  536. ---
  537. background-image: url(https://images.manning.com/720/960/resize/book/a/4e5e97f-4e8d-4d97-a715-f6c2b0eb95f5/Allaire-DLwithR-HI.png)
  538. ---
  539. class: center, middle
  540. # Спасибо!
  541. Слайды сделаны с помощью R package [**xaringan**](https://github.com/yihui/xaringan).
  542. Веб версию слайдов можно найти на https://metya.github.io/DeepLearning_in_R/
  543. Код можно посмотреть здесь https://github.com/metya/DeepLearning_in_R/
  544. </textarea>
  545. <script src="https://remarkjs.com/downloads/remark-latest.min.js"></script>
  546. <script>var slideshow = remark.create({
  547. "highlightStyle": "github",
  548. "highlightLines": true,
  549. "countIncrementalSlides": false
  550. });
  551. if (window.HTMLWidgets) slideshow.on('afterShowSlide', function (slide) {
  552. window.dispatchEvent(new Event('resize'));
  553. });
  554. (function() {
  555. var d = document, s = d.createElement("style"), r = d.querySelector(".remark-slide-scaler");
  556. if (!r) return;
  557. s.type = "text/css"; s.innerHTML = "@page {size: " + r.style.width + " " + r.style.height +"; }";
  558. d.head.appendChild(s);
  559. })();</script>
  560. <script>
  561. (function() {
  562. var i, text, code, codes = document.getElementsByTagName('code');
  563. for (i = 0; i < codes.length;) {
  564. code = codes[i];
  565. if (code.parentNode.tagName !== 'PRE' && code.childElementCount === 0) {
  566. text = code.textContent;
  567. if (/^\\\((.|\s)+\\\)$/.test(text) || /^\\\[(.|\s)+\\\]$/.test(text) ||
  568. /^\$\$(.|\s)+\$\$$/.test(text) ||
  569. /^\\begin\{([^}]+)\}(.|\s)+\\end\{[^}]+\}$/.test(text)) {
  570. code.outerHTML = code.innerHTML; // remove <code></code>
  571. continue;
  572. }
  573. }
  574. i++;
  575. }
  576. })();
  577. </script>
  578. <!-- dynamically load mathjax for compatibility with self-contained -->
  579. <script>
  580. (function () {
  581. var script = document.createElement('script');
  582. script.type = 'text/javascript';
  583. script.src = 'https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML';
  584. if (location.protocol !== 'file:' && /^https?:/.test(script.src))
  585. script.src = script.src.replace(/^https?:/, '');
  586. document.getElementsByTagName('head')[0].appendChild(script);
  587. })();
  588. </script>
  589. </body>
  590. </html>