General Activity For Now 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # Курсы
  2. ## Курсы, которые надо пройти
  3. * [Deep Learning Google](https://eu.udacity.com/course/deep-learning--ud730)
  4. * [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.com/machine-learning/crash-course/)
  5. * [Learning TensorFlow](https://learningtensorflow.com)
  6. * [Kaggel Learn](https://www.kaggle.com/learn/overview)
  7. * [Data Vizualization Kaggle](https://www.kaggle.com/learn/data-visualisation)
  8. * Andrew Ng
  9. * cs221
  10. * Future Learning
  11. * [HSE Course (GitHub)](https://github.com/esokolov/ml-course-hse/)
  12. ## Stepic Additional
  13. * [Examination](https://stepik.org/lesson/68008/step/1?unit=44971)
  14. * [Adaptive tasks](https://stepik.org/lesson/43732/step/1?adaptive=true&unit=22777)
  15. ## Курсы, что я прохожу
  16. * ODS ML Course Open
  17. * Deep NLP MIPT
  18. * cs224n (NLP)
  19. ## Курсы, что я уже прошел
  20. -----
  21. # Чтение
  22. ## Штуки, что надо прочитать
  23. * [How Numba and Cython speed up Python code](https://rushter.com/blog/numba-cython-python-optimization/)
  24. * [Serving machine learning models with RestServe on R](http://restrserve.org/serving-ml.html)
  25. * [R TensorFlow Tutorial](https://tensorflow.rstudio.com)
  26. * [R Keras Tutorial](https://keras.rstudio.com)
  27. * [New Resources for Deep Learning with the Neuromation Platform](https://medium.com/neuromation-io-blog/new-resources-for-deep-learning-with-the-neuromation-platform-55fd411cb440)
  28. * [Word2Vec Tutorial](http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/)
  29. * [Серия статей про ембединги текста](http://ruder.io/word-embeddings-1/)
  30. * [ImageNet Classification with Deep Convolutional Neural Networks - Colyer](https://blog.acolyer.org/2016/04/20/imagenet-classification-with-deep-convolutional-neural-networks/)
  31. * [Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition](https://blog.acolyer.org/2016/04/19/context-dependent-pre-trained-deep-neural-networks-for-large-vocabulary-speech-recognition/)
  32. https://habrahabr.ru/post/352632/ Истинная реализация нейросети с нуля.
  33. -----
  34. # Видео
  35. ## Штуки, что я прочитал
  36. ## Видео, что мне надо посмотреть
  37. * [Essense of Linear Azlgebra](https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
  38. * [PyData Meetup (TensorFlow Architecture)](https://www.youtube.com/watch?v=aoin1nl_eSA&feature=youtu.be&t=5810) [Materials](https://github.com/yurijvolkov/pydata_examples)
  39. * [Kaggle Mercedes Benz: предсказание времени тестирования автомобилей ](https://www.youtube.com/watch?v=HT3QpRp2ewA)
  40. * [Эффективные модели ближайших соседей](https://www.youtube.com/watch?v=UUm4MOyVTnE)
  41. ## Видео, что я посмотрел
  42. * [NLP натекин](https://www.youtube.com/watch?v=Ozm0bEi5KaI)