# My Activity to study and do Data Science То что я сейчас прохожу, читаю, прочитал, посмотрел, сделал и вообще мой личный списочек всего с этим связанного # Содержание - [Курсы и активности](#Курсы-и-активности) + [Курсы, которые надо пройти](#Курсы-которые-надо-пройти) + [Stepic Additional](#stepic-additional) + [Курсы, что я прохожу](#Курсы-что-я-прохожу) + [Курсы, что я уже прошел](#Курсы-что-я-уже-прошел) + [Где я участвовал как слушатель или как участник или как организатор. Школы, конференции, семинары](#Где-я-участвовал-как-слушатель-или-как-участник-или-как-организатор-Школы-конференции-семинары) - [Чтение и писанина](#Чтение-и-писанина) + [Штуки, что надо прочитать](#Штуки-что-надо-прочитать) + [Штуки, что я прочитал](#Штуки-что-я-прочитал) + [Штуки, что я написал, перевел](#Штуки-что-я-написал-перевел) - [Видео](#Видео) + [Видео, что мне надо посмотреть](#Видео-что-мне-надо-посмотреть) + [Видео, что я посмотрел](#Видео-что-я-посмотрел) + [Подкасты, что я послушал](#Подкасты-что-я-послушал) - [Наука, работа и проекты](#Наука-работа-и-проекты) + [Научные статьи, что я прочитал](#Научные-статьи-что-я-прочитал) - [My Local Not So Awesome List](#my-local-not-so-awesome-list) + [Interested Links](#interested-links) + [Necessary and Useful Tools](#necessary-and-useful-tools) + [Datasets](#datasets) ------- # Курсы и активности ## Курсы, которые надо пройти * [Deep Learning Google](https://eu.udacity.com/course/deep-learning--ud730) * [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.com/machine-learning/crash-course/) * [Learning TensorFlow](https://learningtensorflow.com) * [Kaggel Learn](https://www.kaggle.com/learn/overview) * [Data Vizualization Kaggle](https://www.kaggle.com/learn/data-visualisation) * Andrew Ng * cs221 * Future Learning * [HSE Course (GitHub)](https://github.com/esokolov/ml-course-hse/) * [Microsoft Professional Program for Artificial Intelligence](https://academy.microsoft.com/en-us/professional-program/tracks/artificial-intelligence/) * [Blommberg ML](https://bloomberg.github.io/foml/#home) * [Toronto DL](http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/) * [Elements of AI](https://course.elementsofai.com) * [Julia Scientific Programming Coursera](https://ru.coursera.org/learn/julia-programming) * [Stepic Julia](https://stepik.org/course/2407) ## Stepic Additional * [Examination](https://stepik.org/lesson/68008/step/1?unit=44971) * [Adaptive tasks](https://stepik.org/lesson/43732/step/1?adaptive=true&unit=22777) ## Курсы, что я прохожу * ODS ML Course Open * Deep NLP MIPT * cs224n (NLP) * cs231n (DeepLearning) * [Carnegie Melon Deep Learning Course](http://deeplearning.cs.cmu.edu) ## Курсы, что я уже прошел * [Летняя Школа. Мастерская Deep Learning](http://letnyayashkola.org/deeplearning/) * DataCamp: * [Intro to Python for Data Science](https://www.datacamp.com/courses/intro-to-python-for-data-science) * [Intermediate Python for Data Science](https://www.datacamp.com/courses/intermediate-python-for-data-science) * [Intro to SQL for Data Science](https://www.datacamp.com/courses/intro-to-sql-for-data-science) * [Joining Data in PostgreSQL](https://www.datacamp.com/courses/joining-data-in-postgresql) ## Где я участвовал как слушатель или как участник или как организатор. Школы, конференции, семинары * [Летняя Школа. Мастерская Deep Learning](http://letnyayashkola.org/deeplearning/) * [Data Fest^5, Москва,28 апреля 2018](http://datafest.ru/5/) ----- # Чтение и писанина ## Штуки, что надо прочитать * [How Numba and Cython speed up Python code](https://rushter.com/blog/numba-cython-python-optimization/) * [Serving machine learning models with RestServe on R](http://restrserve.org/serving-ml.html) * [R TensorFlow Tutorial](https://tensorflow.rstudio.com) * [R Keras Tutorial](https://keras.rstudio.com) * [New Resources for Deep Learning with the Neuromation Platform](https://medium.com/neuromation-io-blog/new-resources-for-deep-learning-with-the-neuromation-platform-55fd411cb440) * [Word2Vec Tutorial](http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/) * [Серия статей про ембединги текста](http://ruder.io/word-embeddings-1/) * [ImageNet Classification with Deep Convolutional Neural Networks - Colyer](https://blog.acolyer.org/2016/04/20/imagenet-classification-with-deep-convolutional-neural-networks/) * [Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition](https://blog.acolyer.org/2016/04/19/context-dependent-pre-trained-deep-neural-networks-for-large-vocabulary-speech-recognition/) * [Истинная реализация нейросети с нуля. Часть 2](https://habrahabr.ru/post/352632/) * [Functional Programming for Deep Learning](https://www.notion.so/metya/5f25295584414592a3581836625b77d3#d5f53eac3e7146eeba6bf6365449600a) * Все отсюда! Прекрасный блог про понимание базовых дип лернингов [colah.github.io](http://colah.github.io/archive.html) * Например вот это - [Understanding LSTM Networks](http://colah.github.io/posts/2015-08-Understanding-LSTMs/) * [Manning And Le Cun talks about Innate Prior Chomsky](http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html) * [The Unreasonable Effectiveness of Recurrent Neural Networks (Карпатый)](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) * [Ассоциативные правила, или пиво с подгузниками](https://habrahabr.ru/company/ods/blog/353502/) * [Connection between absract algebra and high school algebra](https://blogs.ams.org/matheducation/2015/12/10/connections-between-abstract-algebra-and-high-school-algebra-a-few-connections-worth-exploring/) * [Instance Embedding: Segmentation Without Proposals](https://medium.com/@barvinograd1/instance-embedding-instance-segmentation-without-proposals-31946a7c53e1) * [Обзор топологий глубоких сверточных сетей](https://habrahabr.ru/company/mailru/blog/311706/) * [Generative Adversarial Nets and Variational Autoencoders at ICML 2018](https://medium.com/peltarion/generative-adversarial-nets-and-variational-autoencoders-at-icml-2018-6878416ebf22) * [Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification](https://www.nature.com/articles/s41598-018-30619-y) * [CERN Project Sees Orders-of-Magnitude Speedup with AI Approach](https://www.hpcwire.com/2018/08/14/cern-incorporates-ai-into-physics-based-simulations/) * [***Large-Scale Study of Curiosity-Driven Learning.***](https://pathak22.github.io/large-scale-curiosity/) * [Building a text classification model with TensorFlow Hub and Estimators](https://medium.com/tensorflow/building-a-text-classification-model-with-tensorflow-hub-and-estimators-3169e7aa568) * [Moving Beyond Translation with the Universal Transformer.](https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html) * [Explaining Black-Box Machine Learning Models - Code Part 1: tabular data + caret + iml](https://shirinsplayground.netlify.com/2018/07/explaining_ml_models_code_caret_iml/) * [Keras DNN Part 2](https://shirinsplayground.netlify.com/2018/06/keras_fruits_lime/) * [Boosting Part 3](https://shirinsplayground.netlify.com/2018/07/explaining_ml_models_code_text_lime/) * [Recent Advances for a Better Understanding of Deep Learning − Part I](https://towardsdatascience.com/recent-advances-for-a-better-understanding-of-deep-learning-part-i-5ce34d1cc914) * [What is a Generative Adversarial Network? ](http://hunterheidenreich.com/blog/what-is-a-gan/) * [Think Julia: How to Think Like a Computer Scientist](https://benlauwens.github.io/ThinkJulia.jl/latest/book.html) * [Rules of Machine Learning: Best Practices for ML Engineering (24 страницы)](https://drive.google.com/file/d/0B1WwFMq7KtPudkJMNUc2N1FOMzQ/view) * [A Few Useful Things to Know about Machine Learning (9 страниц)](https://drive.google.com/file/d/0B1WwFMq7KtPuMDA5QU01Tm1TSmM/view) ## Штуки, что я прочитал * [Про преобразование фурье](https://habrahabr.ru/post/196374/) * [Как предсказывают погоду](https://vas3k.ru/blog/how_to_weather/) * [Генерация стихов нейросетями](https://vas3k.ru/blog/394/) * [Blockchain]() * [Ehtereum](https://vas3k.ru/blog/ethereum/) * [Автоэнкодеры в Keras](https://habrahabr.ru/post/331382/) * [Разброс и смещение Дяконова](https://alexanderdyakonov.wordpress.com/2018/04/25/%D1%81%D0%BC%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5-bias-%D0%B8-%D1%80%D0%B0%D0%B7%D0%B1%D1%80%D0%BE%D1%81-variance-%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D0%B8-%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82/) * [Распонзнавание сцен и достопримечательностей](https://habr.com/company/jugru/blog/419501/) * [Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples](https://blog.acolyer.org/2018/08/15/obfuscated-gradients-give-a-false-sense-of-security-circumventing-defenses-to-adversarial-examples/) * [When DNNs go wrong – adversarial examples and what we can learn from them](https://blog.acolyer.org/2017/02/28/when-dnns-go-wrong-adversarial-examples-and-what-we-can-learn-from-them/) * [Understanding, generalisation, and transfer learning in deep neural networks](https://blog.acolyer.org/2017/02/27/understanding-generalisation-and-transfer-learning-in-deep-neural-networks/) * [Universal adversarial perturbations](https://blog.acolyer.org/2017/09/12/universal-adversarial-perturbations/) * [Delayed impact of fair machine learning](https://blog.acolyer.org/2018/08/13/delayed-impact-of-fair-machine-learning/) * [Почему хватит считать нейронные сети черным ящиком?](https://habr.com/post/420381/) * [Ultimate guide to handle Big Datasets for Machine Learning using Dask (in Python)](https://www.analyticsvidhya.com/blog/2018/08/dask-big-datasets-machine_learning-python/) * [OpenCV People Counter](https://www.pyimagesearch.com/2018/08/13/opencv-people-counter/) * [Ложь, наглая ложь и причинный вывод (causal inference)](https://ailev.livejournal.com/1435703.html) * [pandas on ray early lessons](https://rise.cs.berkeley.edu/blog/pandas-on-ray-early-lessons/) * [Red Flags In DS interview](http://hookedondata.org/Red-Flags-in-Data-Science-Interviews/) * [Classifying physical activity from smartphone data (Keras and R)](http://blogs.rstudio.com/tensorflow/posts/2018-07-17-activity-detection/) * [Keras for R](http://blogs.rstudio.com/tensorflow/posts/2017-09-06-keras-for-r/) * [Simple audio classification in keras in R](http://blogs.rstudio.com/tensorflow/posts/2018-06-06-simple-audio-classification-keras/) * [Пицца аля-semi-supervised](https://habr.com/company/ods/blog/422873/) * [Определение цвета автомобилей с использованием нейронных сетей и TensorFlow](https://habr.com/company/intel/blog/422689/) * [Yes, you should understand backprop. A. Karpaty](https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b) * --- ## Штуки, что я написал, перевел * [Применяем Deep Watershed Transform в соревновании Kaggle Data Science Bowl 2018](https://habrahabr.ru/post/354040/) * [Из спутниковых снимков в графы (cоревнование SpaceNet Road Detector) — попадание топ-10 и код ](https://habrahabr.ru/post/349068/) * [Соревнование Pri-matrix Factorization на DrivenData с 1ТБ данных — как мы заняли 3 место](https://habrahabr.ru/post/348540/) ------ # Видео ## Видео, что мне надо посмотреть * [Essense of Linear Azlgebra](https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) * [PyData Meetup (TensorFlow Architecture)](https://www.youtube.com/watch?v=aoin1nl_eSA&feature=youtu.be&t=5810) [Materials](https://github.com/yurijvolkov/pydata_examples) * [Kaggle Mercedes Benz: предсказание времени тестирования автомобилей ](https://www.youtube.com/watch?v=HT3QpRp2ewA) * [Эффективные модели ближайших соседей](https://www.youtube.com/watch?v=UUm4MOyVTnE) * [Lisa Feldman: Emotions and brain](https://www.youtube.com/watch?v=h7Mtwds0wW4&feature=youtu.be) * [Manning And Le Cun talks about Innate Prior Chomsky](https://youtu.be/fKk9KhGRBdI) * [Attention is all you need by Ilya Polosuhin](https://www.youtube.com/watch?v=I0nX4HDmXKc) * [Simon says LSTM](https://www.youtube.com/watch?v=wYI7RZz4Rz0) * [Интервью с Виктором Рогуленко](http://youtube.com/watch?v=ymSqI0hVj-Q) ## Видео, что я посмотрел * [NLP натекин](https://www.youtube.com/watch?v=Ozm0bEi5KaI) * [Bias in an Artificial Neural Network explained | How bias impacts training](https://www.youtube.com/watch?v=HetFihsXSys) * [Keras init bias](https://www.youtube.com/watch?v=zralyi2Ft20) * [Генератор текста цепями маркова](https://tproger.ru/translations/markov-chains/) * [Ethereum work like](https://www.youtube.com/watch?v=a-Azm3nEuUI) * [Dstl Safe Passage: детекция и классификация траспортных средств — Владимир Игловиков](https://www.youtube.com/watch?v=NV9LSUIVkWA&feature=youtu.be&t=1247) * [Анализ больших данных в физике элементарных частиц](https://www.youtube.com/watch?v=SgI8S8ltBKc&feature=youtu.be) * [Large-Scale Study of Curiosity-Driven Learning](https://youtu.be/l1FqtAHfJLI) * [Подтипирование в Julia: рациональная реконструкция](https://www.youtube.com/watch?v=nnOJfPIrFdM) * [Semantic Folding: a new model for intelligent text processing](https://www.youtube.com/watch?v=HLuRQKzYbb8&feature=youtu.be) * [Применение карты Кохонена для классификации](https://www.youtube.com/watch?v=5FiH88Rs8Hc) * [Lambda Calculus](https://youtu.be/eis11j_iGMs) * [Essentials: Functional Programming's Y Combinator](https://www.youtube.com/watch?v=9T8A89jgeTI) * [Illustrated Guide to Recurrent Neural Networks](https://youtu.be/LHXXI4-IEns) * [illustrated guide to LSTM's and GRU's](https://www.youtube.com/watch?v=8HyCNIVRbSU) * [Visual Rhythm Beat](https://www.youtube.com/watch?v=K3z68mOLbNo&feature=youtu.be) * [Deep Learning, Structure and Innate Priors](https://youtu.be/fKk9KhGRBdI) * [чатботы на дваче с разными алгами внутри](https://youtu.be/1LcdA0Y7IEk) * ----- ## Подкасты, что я послушал * [Deep Learning и Artificial Intelligence — Episode 0114](http://devzen.ru/episode-0114/) * [AI и TensorFlow — Episode 0122](http://devzen.ru/episode-0122/) * [DataDog и Cloud Spanner](http://devzen.ru/episode-0130/) ------ # Наука, работа и проекты ## Научные статьи, что я прочитал * [Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms et al 2018](http://iopscience.iop.org/article/10.3847/1538-4357/aaae00) ------ # My Local Not So Awesome List ## Interested Links * слайды доклада по рекомендационной системе нетфликса [Recommender Systems (Machine Learning Summer School 2014 @ CMU)](http://www.slideshare.net/xamat/recommender-systems-machine-learning-summer-school-2014-cmu) * [An Interactive Tutorial on Numerical Optimization](http://www.benfrederickson.com/numerical-optimization/) * [Презентация про видеоанализ с RNN](https://www.slideshare.net/xavigiro/video-analysis-with-recurrent-neural-networks-master-computer-vision-barcelona-2017) * [The Building Blocks of Interpretability Neural Networks](https://distill.pub/2018/building-blocks/) * Хаскель и ДипЛернинг - [Awesome Haskell Deep Learning](https://github.com/austinvhuang/awesome-haskell-deep-learning) * Статья рассуждение [Functional programming for deep-learning](https://towardsdatascience.com/functional-programming-for-deep-learning-bc7b80e347e9) (**clojure**) * Очерендной осом хаскель мл лист [Awesome haskell ML](https://github.com/DataHaskell/awesome-haskell-ml) * Раздел дата саенс осом хаскель листа [Awesome Haskell#Data Science](https://github.com/krispo/awesome-haskell#data-science) * Сайт Data Haskell коммьюнити http://www.datahaskell.org/ * Сайт книги [Over 130 Practical Recipes For Data Analysis and Machine Learning](http://haskelldata.com/) и [репа книги](https://github.com/BinRoot/Haskell-Data-Analysis-Cookbook) * Кажется главный пакет по хаскель мл (и уже устарел) - [Hlearn](https://github.com/mikeizbicki/HLearn) * Очередной язычок Nim очередной диплернинг [Experimental rewrite of mnielson's deep learning example code in Nim](https://github.com/jfhg/nimdeep) * Дичайший диплернинг фреймворк для Nim - [Arraymancer](https://github.com/mratsim/Arraymancer) * Все что нужно и всякие другие штуки в МЛ и ДЛ в Джулии (ванлав кажется язычок) в годном месте на [сайте](https://juliaml.github.io) и их [репа](https://github.com/JuliaML) * [Awesome NLP](https://github.com/keon/awesome-nlp) * [Awesome Deep Learning](https://github.com/ChristosChristofidis/awesome-deep-learning) * [Awesome Most Cited Deep Learning Papers](https://github.com/terryum/awesome-deep-learning-papers) * [Awesome Data Science](https://github.com/bulutyazilim/awesome-datascience) * [Awesome Machine Learning & Deep Learning Tutorials](https://github.com/ujjwalkarn/Machine-Learning-Tutorials) * [Awesome R](https://github.com/qinwf/awesome-R) * [A curated list of data science blogs](https://github.com/rushter/data-science-blogs) * [Awesome Artificial Intelligence](https://github.com/owainlewis/awesome-artificial-intelligence) ---- ## Necessary and Useful Tools * [List of scappers](https://github.com/cassidoo/scrapers) - Огромный список программ скрейперов помогающих извлекать данные из веб-сайтов. Это инструменты на всех языках программирования и несложные в освоении * [Обработка текста с командной строки](https://github.com/dbohdan/structured-text-tools) - Большая подборка инструментов позволяющих быстро обрабатывать CSV, JSON, XML и другие структурированные документы * [JKAN](https://jkan.io/) - Малоизвестный в России открытый движок JKAN для быстрой сборки статического портала открытых данных. Очень просто устроен, очень быстро разворачивается. * [Kekyll on Haskell](https://jaspervdj.be/hakyll/) - быстрый движок подъема статистических страниц. Как Jekyll только на Хаскеле. Just for fun. * [React Vizualization](https://github.com/bvaughn/react-virtualized) - визуализация на реакте. Зачем то. * [D3.js](https://d3js.org/) - нормальная визуализация с помошью нормального JS * [PyTorch - Python + Nim](https://github.com/fragcolor-xyz/nimtorch) - компилируемый переписаный пайторч под ним * [Lucid](https://github.com/tensorflow/lucid) - _Lucid is a collection of infrastructure and tools for research in neural network interpretability._ Фреймворк и набор тетрадок для анализа и визуализации нейросетей * [AutoKeras](https://autokeras.com/) * [auto-sklearn](http://automl.github.io/auto-sklearn/) * [Research2vec](https://github.com/Santosh-Gupta/Research2Vec) - моделька для поиска похожих рисерч пейперов, можно юзать как рекомендашку * [A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.](https://github.com/EpistasisLab/tpot) ---- ## Datasets * [Some New Interesting Deep Learning Datasets for Data Scientists](http://blog.paralleldots.com/data-scientist/new-deep-learning-datasets-data-scientists/) - Список датасетов интересный * [Cool Datasets](http://cooldatasets.com/) - сайт с датасетами клевыми * [Целый сабреддит на реддите с датасетами и обсуждениями](https://www.reddit.com/r/datasets/)