|
|
@@ -0,0 +1,63 @@
|
|
|
+# Курсы
|
|
|
+
|
|
|
+## Курсы, которые надо пройти
|
|
|
+
|
|
|
+* [Deep Learning Google](https://eu.udacity.com/course/deep-learning--ud730)
|
|
|
+* [Machine Learning Crash Course with TensorFlow APIs](https://developers.google.com/machine-learning/crash-course/)
|
|
|
+* [Learning TensorFlow](https://learningtensorflow.com)
|
|
|
+* [Kaggel Learn](https://www.kaggle.com/learn/overview)
|
|
|
+* [Data Vizualization Kaggle](https://www.kaggle.com/learn/data-visualisation)
|
|
|
+* Andrew Ng
|
|
|
+* cs221
|
|
|
+* Future Learning
|
|
|
+* [HSE Course (GitHub)](https://github.com/esokolov/ml-course-hse/)
|
|
|
+
|
|
|
+
|
|
|
+## Stepic Additional
|
|
|
+* [Examination](https://stepik.org/lesson/68008/step/1?unit=44971)
|
|
|
+* [Adaptive tasks](https://stepik.org/lesson/43732/step/1?adaptive=true&unit=22777)
|
|
|
+
|
|
|
+
|
|
|
+## Курсы, что я прохожу
|
|
|
+
|
|
|
+* ODS ML Course Open
|
|
|
+* Deep NLP MIPT
|
|
|
+* cs224n (NLP)
|
|
|
+
|
|
|
+## Курсы, что я уже прошел
|
|
|
+
|
|
|
+-----
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+# Чтение
|
|
|
+
|
|
|
+## Штуки, что надо прочитать
|
|
|
+
|
|
|
+* [How Numba and Cython speed up Python code](https://rushter.com/blog/numba-cython-python-optimization/)
|
|
|
+* [Serving machine learning models with RestServe on R](http://restrserve.org/serving-ml.html)
|
|
|
+* [R TensorFlow Tutorial](https://tensorflow.rstudio.com)
|
|
|
+* [R Keras Tutorial](https://keras.rstudio.com)
|
|
|
+* [New Resources for Deep Learning with the Neuromation Platform](https://medium.com/neuromation-io-blog/new-resources-for-deep-learning-with-the-neuromation-platform-55fd411cb440)
|
|
|
+* [Word2Vec Tutorial](http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/)
|
|
|
+* [Серия статей про ембединги текста](http://ruder.io/word-embeddings-1/)
|
|
|
+* [ImageNet Classification with Deep Convolutional Neural Networks - Colyer](https://blog.acolyer.org/2016/04/20/imagenet-classification-with-deep-convolutional-neural-networks/)
|
|
|
+* [Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition](https://blog.acolyer.org/2016/04/19/context-dependent-pre-trained-deep-neural-networks-for-large-vocabulary-speech-recognition/)
|
|
|
+https://habrahabr.ru/post/352632/ Истинная реализация нейросети с нуля.
|
|
|
+-----
|
|
|
+
|
|
|
+
|
|
|
+# Видео
|
|
|
+
|
|
|
+## Штуки, что я прочитал
|
|
|
+
|
|
|
+## Видео, что мне надо посмотреть
|
|
|
+
|
|
|
+* [Essense of Linear Azlgebra](https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
|
|
|
+* [PyData Meetup (TensorFlow Architecture)](https://www.youtube.com/watch?v=aoin1nl_eSA&feature=youtu.be&t=5810) [Materials](https://github.com/yurijvolkov/pydata_examples)
|
|
|
+* [Kaggle Mercedes Benz: предсказание времени тестирования автомобилей ](https://www.youtube.com/watch?v=HT3QpRp2ewA)
|
|
|
+* [Эффективные модели ближайших соседей](https://www.youtube.com/watch?v=UUm4MOyVTnE)
|
|
|
+
|
|
|
+## Видео, что я посмотрел
|
|
|
+
|
|
|
+* [NLP натекин](https://www.youtube.com/watch?v=Ozm0bEi5KaI)
|