--- title : CoreML algorytms subtitle : From the beginings to the not author : metya job : Летняя Школа 2018, Deep Learning Workshop framework : io2012 # {io2012, html5slides, shower, dzslides, ...} highlighter : highlight.js # {highlight.js, prettify, highlight} hitheme : tomorrow # widgets : [mathjax] # {mathjax, quiz, bootstrap} mode : selfcontained # {standalone, draft} knit : slidify::knit2slides guthub : user: 'metya' repo: 'CoreML' --- # A few base algorythms and even farther --- # Regression - Linear regression ([объяснение на хабре](https://habr.com/company/ods/blog/323890/)) - NonLinear Regression - Descision Trees - Autoregression (ARIMA, etc.) (множественные модели, многомерные модели, регрессионные остатки) --- # Classification - Logistic regression ([объяснение на хабре](https://habr.com/company/ods/blog/323890/)) - Descision Trees ([объяснение на хабре](https://habr.com/company/ods/blog/322534/)) - K Nearest Neighbours ([объяснение на хабре](https://habr.com/company/ods/blog/322534/)) - Naive Bayes ([Wiki](https://ru.wikipedia.org/wiki/Наивный_байесовский_классификатор), [habr (свежак!)](https://habr.com/post/415963/)) - Linear discriminant analysis (Fisher's) - Support Vector Machine ([хабр](https://habr.com/post/105220/)) - Genetics Algorithms - Expectation-Maximization (EM) ([где то в интернете](https://basegroup.ru/community/articles/em)) --- # Clusterization ([Николенко, слайды](https://logic.pdmi.ras.ru/~sergey/teaching/mlau12/10-clustem.pdf), [воронцов, лекция](http://www.ccas.ru/voron/download/Clustering.pdf)) - K-means ([объяснение на хабре](https://habr.com/company/ods/blog/325654/)) - DBSCAN ([хабр](https://habrahabr.ru/post/322034/)) - Affinity Propagation ([habr](https://habr.com/post/321216/)) - EM - Self-Organaized Maps aka Kohonen's networks ([все там же отличная статья!](https://habr.com/post/338868/)) - Principal Component Analysis aka Понижение размерности ([объяснение на хабре](https://habr.com/company/ods/blog/325654/)) - t-SNE --- # Many of them together - Bagging aka Bootstrap aggregation (Random Forest, etc.) ([объяснение на хабре](https://habr.com/company/ods/blog/324402/)) - Boosting ([все там же](https://habr.com/company/ods/blog/327250/), [дьяконов](https://alexanderdyakonov.wordpress.com/2017/06/09/градиентный-бустинг/comment-page-1/), [чья то неплохая курсовая](http://www.machinelearning.ru/wiki/images/9/9a/fonarev.overview_of_boosting_methods.pdf)) --- .middle # FIN!