QUADRICS.C 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520
  1. /****************************************************************************
  2. * quadrics.c
  3. *
  4. * This module implements the code for the quadric shape primitive.
  5. *
  6. * from Persistence of Vision(tm) Ray Tracer
  7. * Copyright 1996,1999 Persistence of Vision Team
  8. *---------------------------------------------------------------------------
  9. * NOTICE: This source code file is provided so that users may experiment
  10. * with enhancements to POV-Ray and to port the software to platforms other
  11. * than those supported by the POV-Ray Team. There are strict rules under
  12. * which you are permitted to use this file. The rules are in the file
  13. * named POVLEGAL.DOC which should be distributed with this file.
  14. * If POVLEGAL.DOC is not available or for more info please contact the POV-Ray
  15. * Team Coordinator by email to team-coord@povray.org or visit us on the web at
  16. * http://www.povray.org. The latest version of POV-Ray may be found at this site.
  17. *
  18. * This program is based on the popular DKB raytracer version 2.12.
  19. * DKBTrace was originally written by David K. Buck.
  20. * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
  21. *
  22. *****************************************************************************/
  23. #include "frame.h"
  24. #include "povray.h"
  25. #include "vector.h"
  26. #include "povproto.h"
  27. #include "bbox.h"
  28. #include "objects.h"
  29. #include "matrices.h"
  30. #include "planes.h"
  31. #include "quadrics.h"
  32. /*****************************************************************************
  33. * Local preprocessor defines
  34. ******************************************************************************/
  35. /* The following defines make typing much easier! [DB 7/94] */
  36. #define Xd Ray->Direction[X]
  37. #define Yd Ray->Direction[Y]
  38. #define Zd Ray->Direction[Z]
  39. #define Xo Ray->Initial[X]
  40. #define Yo Ray->Initial[Y]
  41. #define Zo Ray->Initial[Z]
  42. #define QA Quadric->Square_Terms[X]
  43. #define QE Quadric->Square_Terms[Y]
  44. #define QH Quadric->Square_Terms[Z]
  45. #define QB Quadric->Mixed_Terms[X]
  46. #define QC Quadric->Mixed_Terms[Y]
  47. #define QF Quadric->Mixed_Terms[Z]
  48. #define QD Quadric->Terms[X]
  49. #define QG Quadric->Terms[Y]
  50. #define QI Quadric->Terms[Z]
  51. #define QJ Quadric->Constant
  52. /*****************************************************************************
  53. * Static functions
  54. ******************************************************************************/
  55. static int Intersect_Quadric (RAY *Ray, QUADRIC *Quadric, DBL *Depth1, DBL *Depth2);
  56. static void Quadric_To_Matrix (QUADRIC *Quadric, MATRIX Matrix);
  57. static void Matrix_To_Quadric (MATRIX Matrix, QUADRIC *Quadric);
  58. static int All_Quadric_Intersections (OBJECT *Object, RAY *Ray, ISTACK *Depth_Stack);
  59. static int Inside_Quadric (VECTOR IPoint, OBJECT *Object);
  60. static void Quadric_Normal (VECTOR Result, OBJECT *Object, INTERSECTION *Inter);
  61. static QUADRIC *Copy_Quadric (OBJECT *Object);
  62. static void Translate_Quadric (OBJECT *Object, VECTOR Vector, TRANSFORM *Trans);
  63. static void Rotate_Quadric (OBJECT *Object, VECTOR Vector, TRANSFORM *Trans);
  64. static void Scale_Quadric (OBJECT *Object, VECTOR Vector, TRANSFORM *Trans);
  65. static void Transform_Quadric (OBJECT *Object, TRANSFORM *Trans);
  66. static void Invert_Quadric (OBJECT *Object);
  67. static void Destroy_Quadric (OBJECT *Object);
  68. /*****************************************************************************
  69. * Local variables
  70. ******************************************************************************/
  71. METHODS Quadric_Methods =
  72. {
  73. All_Quadric_Intersections,
  74. Inside_Quadric, Quadric_Normal,
  75. (COPY_METHOD)Copy_Quadric,
  76. Translate_Quadric, Rotate_Quadric,
  77. Scale_Quadric, Transform_Quadric, Invert_Quadric,
  78. Destroy_Quadric
  79. };
  80. /*****************************************************************************
  81. *
  82. * FUNCTION
  83. *
  84. * All_Quadric_Intersections
  85. *
  86. * INPUT
  87. *
  88. * OUTPUT
  89. *
  90. * RETURNS
  91. *
  92. * AUTHOR
  93. *
  94. * POV-Ray Team
  95. *
  96. * DESCRIPTION
  97. *
  98. * -
  99. *
  100. * CHANGES
  101. *
  102. * -
  103. *
  104. ******************************************************************************/
  105. static int All_Quadric_Intersections(OBJECT *Object, RAY *Ray, ISTACK *Depth_Stack)
  106. {
  107. DBL Depth1, Depth2;
  108. VECTOR IPoint;
  109. register int Intersection_Found;
  110. Intersection_Found = FALSE;
  111. if (Intersect_Quadric(Ray, (QUADRIC *)Object, &Depth1, &Depth2))
  112. {
  113. if ((Depth1 > Small_Tolerance) && (Depth1 < Max_Distance))
  114. {
  115. VEvaluateRay(IPoint, Ray->Initial, Depth1, Ray->Direction);
  116. if (Point_In_Clip(IPoint, Object->Clip))
  117. {
  118. push_entry(Depth1, IPoint, Object, Depth_Stack);
  119. Intersection_Found = TRUE;
  120. }
  121. }
  122. if ((Depth2 > Small_Tolerance) && (Depth2 < Max_Distance))
  123. {
  124. VEvaluateRay(IPoint, Ray->Initial, Depth2, Ray->Direction);
  125. if (Point_In_Clip(IPoint, Object->Clip))
  126. {
  127. push_entry(Depth2, IPoint, Object, Depth_Stack);
  128. Intersection_Found = TRUE;
  129. }
  130. }
  131. }
  132. return(Intersection_Found);
  133. }
  134. /*****************************************************************************
  135. *
  136. * FUNCTION
  137. *
  138. * Intersect_Quadric
  139. *
  140. * INPUT
  141. *
  142. * OUTPUT
  143. *
  144. * RETURNS
  145. *
  146. * AUTHOR
  147. *
  148. * POV-Ray Team
  149. *
  150. * DESCRIPTION
  151. *
  152. * -
  153. *
  154. * CHANGES
  155. *
  156. * -
  157. *
  158. ******************************************************************************/
  159. static int Intersect_Quadric(RAY *Ray, QUADRIC *Quadric, DBL *Depth1, DBL *Depth2)
  160. {
  161. register DBL a, b, c, d;
  162. Increase_Counter(stats[Ray_Quadric_Tests]);
  163. a = Xd * (QA * Xd + QB * Yd + QC * Zd) +
  164. Yd * (QE * Yd + QF * Zd) +
  165. QH * Zd * Zd;
  166. b = Xd * (QA * Xo + 0.5 * (QB * Yo + QC * Zo + QD)) +
  167. Yd * (QE * Yo + 0.5 * (QB * Xo + QF * Zo + QG)) +
  168. Zd * (QH * Zo + 0.5 * (QC * Xo + QF * Yo + QI));
  169. c = Xo * (QA * Xo + QB * Yo + QC * Zo + QD) +
  170. Yo * (QE * Yo + QF * Zo + QG) +
  171. Zo * (QH * Zo + QI) +
  172. QJ;
  173. if (a != 0.0)
  174. {
  175. /* The equation is quadratic - find its roots */
  176. d = Sqr(b) - a * c;
  177. if (d <= 0.0)
  178. {
  179. return(FALSE);
  180. }
  181. d = sqrt (d);
  182. *Depth1 = (-b + d) / (a);
  183. *Depth2 = (-b - d) / (a);
  184. }
  185. else
  186. {
  187. /* There are no quadratic terms. Solve the linear equation instead. */
  188. if (b == 0.0)
  189. {
  190. return(FALSE);
  191. }
  192. *Depth1 = - 0.5 * c / b;
  193. *Depth2 = Max_Distance;
  194. }
  195. Increase_Counter(stats[Ray_Quadric_Tests_Succeeded]);
  196. return(TRUE);
  197. }
  198. /*****************************************************************************
  199. *
  200. * FUNCTION
  201. *
  202. * Inside_Quadric
  203. *
  204. * INPUT
  205. *
  206. * OUTPUT
  207. *
  208. * RETURNS
  209. *
  210. * AUTHOR
  211. *
  212. * POV-Ray Team
  213. *
  214. * DESCRIPTION
  215. *
  216. * -
  217. *
  218. * CHANGES
  219. *
  220. * -
  221. *
  222. ******************************************************************************/
  223. static int Inside_Quadric(VECTOR IPoint, OBJECT *Object)
  224. {
  225. QUADRIC *Quadric = (QUADRIC *)Object;
  226. /* This is faster and shorter. [DB 7/94] */
  227. return((IPoint[X] * (QA * IPoint[X] + QB * IPoint[Y] + QD) +
  228. IPoint[Y] * (QE * IPoint[Y] + QF * IPoint[Z] + QG) +
  229. IPoint[Z] * (QH * IPoint[Z] + QC * IPoint[X] + QI) + QJ) <= 0.0);
  230. }
  231. /*****************************************************************************
  232. *
  233. * FUNCTION
  234. *
  235. * Quadric_Normal
  236. *
  237. * INPUT
  238. *
  239. * OUTPUT
  240. *
  241. * RETURNS
  242. *
  243. * AUTHOR
  244. *
  245. * POV-Ray Team
  246. *
  247. * DESCRIPTION
  248. *
  249. * -
  250. *
  251. * CHANGES
  252. *
  253. * -
  254. *
  255. ******************************************************************************/
  256. static void Quadric_Normal(VECTOR Result, OBJECT *Object, INTERSECTION *Inter)
  257. {
  258. QUADRIC *Quadric = (QUADRIC *) Object;
  259. DBL Len;
  260. /* This is faster and shorter. [DB 7/94] */
  261. Result[X] = 2.0 * QA * Inter->IPoint[X] +
  262. QB * Inter->IPoint[Y] +
  263. QC * Inter->IPoint[Z] +
  264. QD;
  265. Result[Y] = QB * Inter->IPoint[X] +
  266. 2.0 * QE * Inter->IPoint[Y] +
  267. QF * Inter->IPoint[Z] +
  268. QG;
  269. Result[Z] = QC * Inter->IPoint[X] +
  270. QF * Inter->IPoint[Y] +
  271. 2.0 * QH * Inter->IPoint[Z] +
  272. QI;
  273. VLength(Len, Result);
  274. if (Len == 0.0)
  275. {
  276. /* The normal is not defined at this point of the surface. */
  277. /* Set it to any arbitrary direction. */
  278. Make_Vector(Result, 1.0, 0.0, 0.0);
  279. }
  280. else
  281. {
  282. VInverseScaleEq(Result, Len);
  283. }
  284. }
  285. /*****************************************************************************
  286. *
  287. * FUNCTION
  288. *
  289. * Transform_Quadric
  290. *
  291. * INPUT
  292. *
  293. * OUTPUT
  294. *
  295. * RETURNS
  296. *
  297. * AUTHOR
  298. *
  299. * POV-Ray Team
  300. *
  301. * DESCRIPTION
  302. *
  303. * -
  304. *
  305. * CHANGES
  306. *
  307. * -
  308. *
  309. ******************************************************************************/
  310. static void Transform_Quadric(OBJECT *Object, TRANSFORM *Trans)
  311. {
  312. QUADRIC *Quadric=(QUADRIC *)Object;
  313. MATRIX Quadric_Matrix, Transform_Transposed;
  314. Quadric_To_Matrix (Quadric, Quadric_Matrix);
  315. MTimes (Quadric_Matrix, Trans->inverse, Quadric_Matrix);
  316. MTranspose (Transform_Transposed, Trans->inverse);
  317. MTimes (Quadric_Matrix, Quadric_Matrix, Transform_Transposed);
  318. Matrix_To_Quadric (Quadric_Matrix, Quadric);
  319. Recompute_BBox(&Object->BBox, Trans);
  320. }
  321. /*****************************************************************************
  322. *
  323. * FUNCTION
  324. *
  325. * Quadric_To_Matrix
  326. *
  327. * INPUT
  328. *
  329. * OUTPUT
  330. *
  331. * RETURNS
  332. *
  333. * AUTHOR
  334. *
  335. * POV-Ray Team
  336. *
  337. * DESCRIPTION
  338. *
  339. * -
  340. *
  341. * CHANGES
  342. *
  343. * -
  344. *
  345. ******************************************************************************/
  346. static void Quadric_To_Matrix(QUADRIC *Quadric, MATRIX Matrix)
  347. {
  348. MZero (Matrix);
  349. Matrix[0][0] = Quadric->Square_Terms[X];
  350. Matrix[1][1] = Quadric->Square_Terms[Y];
  351. Matrix[2][2] = Quadric->Square_Terms[Z];
  352. Matrix[0][1] = Quadric->Mixed_Terms[X];
  353. Matrix[0][2] = Quadric->Mixed_Terms[Y];
  354. Matrix[0][3] = Quadric->Terms[X];
  355. Matrix[1][2] = Quadric->Mixed_Terms[Z];
  356. Matrix[1][3] = Quadric->Terms[Y];
  357. Matrix[2][3] = Quadric->Terms[Z];
  358. Matrix[3][3] = Quadric->Constant;
  359. }
  360. /*****************************************************************************
  361. *
  362. * FUNCTION
  363. *
  364. * Matrix_To_Quadric
  365. *
  366. * INPUT
  367. *
  368. * OUTPUT
  369. *
  370. * RETURNS
  371. *
  372. * AUTHOR
  373. *
  374. * POV-Ray Team
  375. *
  376. * DESCRIPTION
  377. *
  378. * -
  379. *
  380. * CHANGES
  381. *
  382. * -
  383. *
  384. ******************************************************************************/
  385. static void Matrix_To_Quadric(MATRIX Matrix, QUADRIC *Quadric)
  386. {
  387. Quadric->Square_Terms[X] = Matrix[0][0];
  388. Quadric->Square_Terms[Y] = Matrix[1][1];
  389. Quadric->Square_Terms[Z] = Matrix[2][2];
  390. Quadric->Mixed_Terms[X] = Matrix[0][1] + Matrix[1][0];
  391. Quadric->Mixed_Terms[Y] = Matrix[0][2] + Matrix[2][0];
  392. Quadric->Mixed_Terms[Z] = Matrix[1][2] + Matrix[2][1];
  393. Quadric->Terms[X] = Matrix[0][3] + Matrix[3][0];
  394. Quadric->Terms[Y] = Matrix[1][3] + Matrix[3][1];
  395. Quadric->Terms[Z] = Matrix[2][3] + Matrix[3][2];
  396. Quadric->Constant = Matrix[3][3];
  397. }
  398. /*****************************************************************************
  399. *
  400. * FUNCTION
  401. *
  402. * Translate_Quadric
  403. *
  404. * INPUT
  405. *
  406. * OUTPUT
  407. *
  408. * RETURNS
  409. *
  410. * AUTHOR
  411. *
  412. * POV-Ray Team
  413. *
  414. * DESCRIPTION
  415. *
  416. * -
  417. *
  418. * CHANGES
  419. *
  420. * -
  421. *
  422. ******************************************************************************/
  423. static void Translate_Quadric(OBJECT *Object, VECTOR Vector, TRANSFORM *Trans)
  424. {
  425. Transform_Quadric (Object, Trans);
  426. }
  427. /*****************************************************************************
  428. *
  429. * FUNCTION
  430. *
  431. * Rotate_Quadric
  432. *
  433. * INPUT
  434. *
  435. * OUTPUT
  436. *
  437. * RETURNS
  438. *
  439. * AUTHOR
  440. *
  441. * POV-Ray Team
  442. *
  443. * DESCRIPTION
  444. *
  445. * -
  446. *
  447. * CHANGES
  448. *
  449. * -
  450. *
  451. ******************************************************************************/
  452. static void Rotate_Quadric(OBJECT *Object, VECTOR Vector, TRANSFORM *Trans)
  453. {
  454. Transform_Quadric (Object, Trans);
  455. }
  456. /*****************************************************************************
  457. *
  458. * FUNCTION
  459. *
  460. * Scale_Quadric
  461. *
  462. * INPUT
  463. *
  464. * OUTPUT
  465. *
  466. * RETURNS
  467. *
  468. * AUTHOR
  469. *
  470. * POV-Ray Team
  471. *
  472. * DESCRIPTION
  473. *
  474. * -
  475. *
  476. * CHANGES
  477. *
  478. * -
  479. *
  480. ******************************************************************************/
  481. static void Scale_Quadric(OBJECT *Object, VECTOR Vector, TRANSFORM *Trans)
  482. {
  483. Transform_Quadric (Object, Trans);
  484. }
  485. /*****************************************************************************
  486. *
  487. * FUNCTION
  488. *
  489. * Invert_Quadric
  490. *
  491. * INPUT
  492. *
  493. * OUTPUT
  494. *
  495. * RETURNS
  496. *
  497. * AUTHOR
  498. *
  499. * POV-Ray Team
  500. *
  501. * DESCRIPTION
  502. *
  503. * -
  504. *
  505. * CHANGES
  506. *
  507. * -
  508. *
  509. ******************************************************************************/
  510. static void Invert_Quadric(OBJECT *Object)
  511. {
  512. QUADRIC *Quadric = (QUADRIC *) Object;
  513. VScaleEq(Quadric->Square_Terms, -1.0);
  514. VScaleEq(Quadric->Mixed_Terms, -1.0);
  515. VScaleEq(Quadric->Terms, -1.0);
  516. Quadric->Constant *= -1.0;
  517. Invert_Flag(Object, INVERTED_FLAG);
  518. }
  519. /*****************************************************************************
  520. *
  521. * FUNCTION
  522. *
  523. * Create_Quadric
  524. *
  525. * INPUT
  526. *
  527. * OUTPUT
  528. *
  529. * RETURNS
  530. *
  531. * AUTHOR
  532. *
  533. * POV-Ray Team
  534. *
  535. * DESCRIPTION
  536. *
  537. * -
  538. *
  539. * CHANGES
  540. *
  541. * -
  542. *
  543. ******************************************************************************/
  544. QUADRIC *Create_Quadric()
  545. {
  546. QUADRIC *New;
  547. New = (QUADRIC *)POV_MALLOC(sizeof (QUADRIC), "quadric");
  548. INIT_OBJECT_FIELDS(New, QUADRIC_OBJECT, &Quadric_Methods)
  549. Make_Vector (New->Square_Terms, 1.0, 1.0, 1.0);
  550. Make_Vector (New->Mixed_Terms, 0.0, 0.0, 0.0);
  551. Make_Vector (New->Terms, 0.0, 0.0, 0.0);
  552. New->Constant = 1.0;
  553. return(New);
  554. }
  555. /*****************************************************************************
  556. *
  557. * FUNCTION
  558. *
  559. * Copy_Quadric
  560. *
  561. * INPUT
  562. *
  563. * OUTPUT
  564. *
  565. * RETURNS
  566. *
  567. * AUTHOR
  568. *
  569. * POV-Ray Team
  570. *
  571. * DESCRIPTION
  572. *
  573. * -
  574. *
  575. * CHANGES
  576. *
  577. * -
  578. *
  579. ******************************************************************************/
  580. static QUADRIC *Copy_Quadric(OBJECT *Object)
  581. {
  582. QUADRIC *New;
  583. New = Create_Quadric();
  584. *New = *((QUADRIC *)Object);
  585. return(New);
  586. }
  587. /*****************************************************************************
  588. *
  589. * FUNCTION
  590. *
  591. * Destroy_Quadric
  592. *
  593. * INPUT
  594. *
  595. * OUTPUT
  596. *
  597. * RETURNS
  598. *
  599. * AUTHOR
  600. *
  601. * POV-Ray Team
  602. *
  603. * DESCRIPTION
  604. *
  605. * -
  606. *
  607. * CHANGES
  608. *
  609. * -
  610. *
  611. ******************************************************************************/
  612. static void Destroy_Quadric(OBJECT *Object)
  613. {
  614. POV_FREE (Object);
  615. }
  616. /*****************************************************************************
  617. *
  618. * FUNCTION
  619. *
  620. * Compute_Quadric_BBox
  621. *
  622. * INPUT
  623. *
  624. * Quadric - Qaudric object
  625. *
  626. * OUTPUT
  627. *
  628. * Quadric
  629. *
  630. * RETURNS
  631. *
  632. * AUTHOR
  633. *
  634. * Dieter Bayer
  635. *
  636. * DESCRIPTION
  637. *
  638. * Compute a bounding box around a quadric.
  639. *
  640. * This function calculates the bounding box of a quadric given in
  641. * its normal form, i.e. f(x,y,z) = A*x^2 + E*y^2 + H*z^2 + J = 0.
  642. *
  643. * NOTE: Translated quadrics can also be bounded by this function.
  644. *
  645. * Supported: cones, cylinders, ellipsoids, hyperboloids.
  646. *
  647. * CHANGES
  648. *
  649. * May 1994 : Creation.
  650. *
  651. * Sep 1994 : Added support of hyperpoloids. Improved bounding of
  652. * quadrics used in CSG intersections. [DB]
  653. *
  654. ******************************************************************************/
  655. void Compute_Quadric_BBox(QUADRIC *Quadric, VECTOR ClipMin, VECTOR ClipMax)
  656. {
  657. DBL A, B, C, D, E, F, G, H, I, J;
  658. DBL a, b, c, d;
  659. DBL rx, ry, rz, rx1, rx2, ry1, ry2, rz1, rz2, x, y, z;
  660. DBL New_Volume, Old_Volume;
  661. VECTOR Min, Max, TmpMin, TmpMax, NewMin, NewMax, T1;
  662. BBOX Old;
  663. OBJECT *Sib;
  664. /*
  665. * Check for 'normal' form. If the quadric isn't in it's normal form
  666. * we can't do anything (we could, but that would be to tedious!
  667. * Diagonalising the quadric's 4x4 matrix, i.e. finding its eigenvalues
  668. * and eigenvectors -> solving a 4th order polynom).
  669. */
  670. /* Get quadrics coefficients. */
  671. A = Quadric->Square_Terms[X];
  672. E = Quadric->Square_Terms[Y];
  673. H = Quadric->Square_Terms[Z];
  674. B = Quadric->Mixed_Terms[X] / 2.0;
  675. C = Quadric->Mixed_Terms[Y] / 2.0;
  676. F = Quadric->Mixed_Terms[Z] / 2.0;
  677. D = Quadric->Terms[X] / 2.0;
  678. G = Quadric->Terms[Y] / 2.0;
  679. I = Quadric->Terms[Z] / 2.0;
  680. J = Quadric->Constant;
  681. /* Set small values to 0. */
  682. if (fabs(A) < EPSILON) A = 0.0;
  683. if (fabs(B) < EPSILON) B = 0.0;
  684. if (fabs(C) < EPSILON) C = 0.0;
  685. if (fabs(D) < EPSILON) D = 0.0;
  686. if (fabs(E) < EPSILON) E = 0.0;
  687. if (fabs(F) < EPSILON) F = 0.0;
  688. if (fabs(G) < EPSILON) G = 0.0;
  689. if (fabs(H) < EPSILON) H = 0.0;
  690. if (fabs(I) < EPSILON) I = 0.0;
  691. if (fabs(J) < EPSILON) J = 0.0;
  692. /* Non-zero mixed terms --> return */
  693. if ((B != 0.0) || (C != 0.0) || (F != 0.0))
  694. {
  695. return;
  696. }
  697. /* Non-zero linear terms --> get translation vector */
  698. if ((D != 0.0) || (G != 0.0) || (I != 0.0))
  699. {
  700. if (A != 0.0)
  701. {
  702. T1[X] = -D / A;
  703. }
  704. else
  705. {
  706. if (D != 0.0)
  707. {
  708. T1[X] = J / (2.0 * D);
  709. }
  710. else
  711. {
  712. T1[X] = 0.0;
  713. }
  714. }
  715. if (E != 0.0)
  716. {
  717. T1[Y] = -G / E;
  718. }
  719. else
  720. {
  721. if (G != 0.0)
  722. {
  723. T1[Y] = J / (2.0 * G);
  724. }
  725. else
  726. {
  727. T1[Y] = 0.0;
  728. }
  729. }
  730. if (H != 0.0)
  731. {
  732. T1[Z] = -I / H;
  733. }
  734. else
  735. {
  736. if (I != 0.0)
  737. {
  738. T1[Z] = J / (2.0 * I);
  739. }
  740. else
  741. {
  742. T1[Z] = 0.0;
  743. }
  744. }
  745. /* Recalculate coefficients. */
  746. D += A * T1[X];
  747. G += E * T1[Y];
  748. I += H * T1[Z];
  749. J -= T1[X]*(A*T1[X] + 2.0*D) + T1[Y]*(E*T1[Y] + 2.0*G) + T1[Z]*(H*T1[Z] + 2.0*I);
  750. }
  751. else
  752. {
  753. Make_Vector(T1, 0.0, 0.0, 0.0);
  754. }
  755. /* Get old bounding box. */
  756. Old = Quadric->BBox;
  757. /* Init new bounding box. */
  758. NewMin[X] = NewMin[Y] = NewMin[Z] = -BOUND_HUGE/2;
  759. NewMax[X] = NewMax[Y] = NewMax[Z] = BOUND_HUGE/2;
  760. /* Get the bounding box of the clipping object. */
  761. if (Quadric->Clip != NULL)
  762. {
  763. Min[X] = Min[Y] = Min[Z] = -BOUND_HUGE;
  764. Max[X] = Max[Y] = Max[Z] = BOUND_HUGE;
  765. /* Intersect the members bounding boxes. */
  766. for (Sib = Quadric->Clip; Sib != NULL; Sib = Sib->Sibling)
  767. {
  768. if (!Test_Flag(Sib, INVERTED_FLAG))
  769. {
  770. if (Sib->Methods == &Plane_Methods)
  771. {
  772. Compute_Plane_Min_Max((PLANE *)Sib, TmpMin, TmpMax);
  773. }
  774. else
  775. {
  776. Make_min_max_from_BBox(TmpMin, TmpMax, Sib->BBox);
  777. }
  778. Min[X] = max(Min[X], TmpMin[X]);
  779. Min[Y] = max(Min[Y], TmpMin[Y]);
  780. Min[Z] = max(Min[Z], TmpMin[Z]);
  781. Max[X] = min(Max[X], TmpMax[X]);
  782. Max[Y] = min(Max[Y], TmpMax[Y]);
  783. Max[Z] = min(Max[Z], TmpMax[Z]);
  784. }
  785. }
  786. Assign_Vector(ClipMin, Min);
  787. Assign_Vector(ClipMax, Max);
  788. }
  789. /* Translate clipping box. */
  790. VSubEq(ClipMin, T1);
  791. VSubEq(ClipMax, T1);
  792. /* We want A to be non-negative. */
  793. if (A < 0.0)
  794. {
  795. A = -A;
  796. D = -D;
  797. E = -E;
  798. G = -G;
  799. H = -H;
  800. I = -I;
  801. J = -J;
  802. }
  803. /*
  804. *
  805. * Check for ellipsoid.
  806. *
  807. * x*x y*y z*z
  808. * ----- + ----- + ----- - 1 = 0
  809. * a*a b*b c*c
  810. *
  811. */
  812. if ((A > 0.0) && (E > 0.0) && (H > 0.0) && (J < 0.0))
  813. {
  814. a = sqrt(-J/A);
  815. b = sqrt(-J/E);
  816. c = sqrt(-J/H);
  817. NewMin[X] = -a;
  818. NewMin[Y] = -b;
  819. NewMin[Z] = -c;
  820. NewMax[X] = a;
  821. NewMax[Y] = b;
  822. NewMax[Z] = c;
  823. }
  824. /*
  825. *
  826. * Check for cylinder (x-axis).
  827. *
  828. * y*y z*z
  829. * ----- + ----- - 1 = 0
  830. * b*b c*c
  831. *
  832. */
  833. if ((A == 0.0) && (E > 0.0) && (H > 0.0) && (J < 0.0))
  834. {
  835. b = sqrt(-J/E);
  836. c = sqrt(-J/H);
  837. NewMin[Y] = -b;
  838. NewMin[Z] = -c;
  839. NewMax[Y] = b;
  840. NewMax[Z] = c;
  841. }
  842. /*
  843. *
  844. * Check for cylinder (y-axis).
  845. *
  846. * x*x z*z
  847. * ----- + ----- - 1 = 0
  848. * a*a c*c
  849. *
  850. */
  851. if ((A > 0.0) && (E == 0.0) && (H > 0.0) && (J < 0.0))
  852. {
  853. a = sqrt(-J/A);
  854. c = sqrt(-J/H);
  855. NewMin[X] = -a;
  856. NewMin[Z] = -c;
  857. NewMax[X] = a;
  858. NewMax[Z] = c;
  859. }
  860. /*
  861. *
  862. * Check for cylinder (z-axis).
  863. *
  864. * x*x y*y
  865. * ----- + ----- - 1 = 0
  866. * a*a b*b
  867. *
  868. */
  869. if ((A > 0.0) && (E > 0.0) && (H == 0.0) && (J < 0.0))
  870. {
  871. a = sqrt(-J/A);
  872. b = sqrt(-J/E);
  873. NewMin[X] = -a;
  874. NewMin[Y] = -b;
  875. NewMax[X] = a;
  876. NewMax[Y] = b;
  877. }
  878. /*
  879. *
  880. * Check for cone (x-axis).
  881. *
  882. * x*x y*y z*z
  883. * ----- - ----- - ----- = 0
  884. * a*a b*b c*c
  885. *
  886. */
  887. if ((A > 0.0) && (E < 0.0) && (H < 0.0) && (J == 0.0))
  888. {
  889. a = sqrt(1.0/A);
  890. b = sqrt(-1.0/E);
  891. c = sqrt(-1.0/H);
  892. /* Get radii for lower x value. */
  893. x = ClipMin[X];
  894. ry1 = fabs(x * b / a);
  895. rz1 = fabs(x * c / a);
  896. /* Get radii for upper x value. */
  897. x = ClipMax[X];
  898. ry2 = fabs(x * b / a);
  899. rz2 = fabs(x * c / a);
  900. ry = max(ry1, ry2);
  901. rz = max(rz1, rz2);
  902. NewMin[Y] = -ry;
  903. NewMin[Z] = -rz;
  904. NewMax[Y] = ry;
  905. NewMax[Z] = rz;
  906. }
  907. /*
  908. *
  909. * Check for cone (y-axis).
  910. *
  911. * x*x y*y z*z
  912. * ----- - ----- + ----- = 0
  913. * a*a b*b c*c
  914. *
  915. */
  916. if ((A > 0.0) && (E < 0.0) && (H > 0.0) && (J == 0.0))
  917. {
  918. a = sqrt(1.0/A);
  919. b = sqrt(-1.0/E);
  920. c = sqrt(1.0/H);
  921. /* Get radii for lower y value. */
  922. y = ClipMin[Y];
  923. rx1 = fabs(y * a / b);
  924. rz1 = fabs(y * c / b);
  925. /* Get radii for upper y value. */
  926. y = ClipMax[Y];
  927. rx2 = fabs(y * a / b);
  928. rz2 = fabs(y * c / b);
  929. rx = max(rx1, rx2);
  930. rz = max(rz1, rz2);
  931. NewMin[X] = -rx;
  932. NewMin[Z] = -rz;
  933. NewMax[X] = rx;
  934. NewMax[Z] = rz;
  935. }
  936. /*
  937. *
  938. * Check for cone (z-axis).
  939. *
  940. * x*x y*y z*z
  941. * ----- + ----- - ----- = 0
  942. * a*a b*b c*c
  943. *
  944. */
  945. if ((A > 0.0) && (E > 0.0) && (H < 0.0) && (J == 0.0))
  946. {
  947. a = sqrt(1.0/A);
  948. b = sqrt(1.0/E);
  949. c = sqrt(-1.0/H);
  950. /* Get radii for lower z value. */
  951. z = ClipMin[Z];
  952. rx1 = fabs(z * a / c);
  953. ry1 = fabs(z * b / c);
  954. /* Get radii for upper z value. */
  955. z = ClipMax[Z];
  956. rx2 = fabs(z * a / c);
  957. ry2 = fabs(z * b / c);
  958. rx = max(rx1, rx2);
  959. ry = max(ry1, ry2);
  960. NewMin[X] = -rx;
  961. NewMin[Y] = -ry;
  962. NewMax[X] = rx;
  963. NewMax[Y] = ry;
  964. }
  965. /*
  966. *
  967. * Check for hyperboloid (x-axis).
  968. *
  969. * x*x y*y z*z
  970. * ----- - ----- - ----- + 1 = 0
  971. * a*a b*b c*c
  972. *
  973. */
  974. if ((A > 0.0) && (E < 0.0) && (H < 0.0) && (J > 0.0))
  975. {
  976. /* Get radii for lower x value. */
  977. x = ClipMin[X];
  978. d = 1.0 + A * Sqr(x);
  979. ry1 = sqrt(-d / E);
  980. rz1 = sqrt(-d / H);
  981. /* Get radii for upper x value. */
  982. x = ClipMax[X];
  983. d = 1.0 + A * Sqr(x);
  984. ry2 = sqrt(-d / E);
  985. rz2 = sqrt(-d / H);
  986. ry = max(ry1, ry2);
  987. rz = max(rz1, rz2);
  988. NewMin[Y] = -ry;
  989. NewMin[Z] = -rz;
  990. NewMax[Y] = ry;
  991. NewMax[Z] = rz;
  992. }
  993. /*
  994. *
  995. * Check for hyperboloid (y-axis).
  996. *
  997. * x*x y*y z*z
  998. * ----- - ----- + ----- - 1 = 0
  999. * a*a b*b c*c
  1000. *
  1001. */
  1002. if ((A > 0.0) && (E < 0.0) && (H > 0.0) && (J < 0.0))
  1003. {
  1004. /* Get radii for lower y value. */
  1005. y = ClipMin[Y];
  1006. d = 1.0 - E * Sqr(y);
  1007. rx1 = sqrt(d / A);
  1008. rz1 = sqrt(d / H);
  1009. /* Get radii for upper y value. */
  1010. y = ClipMax[Y];
  1011. d = 1.0 - E * Sqr(y);
  1012. rx2 = sqrt(d / A);
  1013. rz2 = sqrt(d / H);
  1014. rx = max(rx1, rx2);
  1015. rz = max(rz1, rz2);
  1016. NewMin[X] = -rx;
  1017. NewMin[Z] = -rz;
  1018. NewMax[X] = rx;
  1019. NewMax[Z] = rz;
  1020. }
  1021. /*
  1022. *
  1023. * Check for hyperboloid (z-axis).
  1024. *
  1025. * x*x y*y z*z
  1026. * ----- + ----- - ----- - 1 = 0
  1027. * a*a b*b c*c
  1028. *
  1029. */
  1030. if ((A > 0.0) && (E > 0.0) && (H < 0.0) && (J < 0.0))
  1031. {
  1032. /* Get radii for lower z value. */
  1033. z = ClipMin[Z];
  1034. d = 1.0 - H * Sqr(z);
  1035. rx1 = sqrt(d / A);
  1036. ry1 = sqrt(d / E);
  1037. /* Get radii for upper z value. */
  1038. z = ClipMax[Z];
  1039. d = 1.0 - H * Sqr(z);
  1040. rx2 = sqrt(d / A);
  1041. ry2 = sqrt(d / E);
  1042. rx = max(rx1, rx2);
  1043. ry = max(ry1, ry2);
  1044. NewMin[X] = -rx;
  1045. NewMin[Y] = -ry;
  1046. NewMax[X] = rx;
  1047. NewMax[Y] = ry;
  1048. }
  1049. /*
  1050. *
  1051. * Check for paraboloid (x-axis).
  1052. *
  1053. * y*y z*z
  1054. * x - ----- - ----- = 0
  1055. * b*b c*c
  1056. *
  1057. */
  1058. if ((A == 0.0) && (D != 0.0) && (E != 0.0) && (H != 0.0) && (J == 0.0))
  1059. {
  1060. /* Get radii for lower x value. */
  1061. x = ClipMin[X];
  1062. ry1 = sqrt(fabs(2.0 * D * x / E));
  1063. rz1 = sqrt(fabs(2.0 * D * x / H));
  1064. /* Get radii for upper x value. */
  1065. x = ClipMax[X];
  1066. ry2 = sqrt(fabs(2.0 * D * x / E));
  1067. rz2 = sqrt(fabs(2.0 * D * x / H));
  1068. ry = max(ry1, ry2);
  1069. rz = max(rz1, rz2);
  1070. NewMin[Y] = -ry;
  1071. NewMin[Z] = -rz;
  1072. NewMax[Y] = ry;
  1073. NewMax[Z] = rz;
  1074. }
  1075. /*
  1076. *
  1077. * Check for paraboloid (y-axis).
  1078. *
  1079. * x*x z*z
  1080. * y - ----- - ----- = 0
  1081. * a*a c*c
  1082. *
  1083. */
  1084. if ((E == 0.0) && (G != 0.0) && (A != 0.0) && (H != 0.0) && (J == 0.0))
  1085. {
  1086. /* Get radii for lower y-value. */
  1087. y = ClipMin[Y];
  1088. rx1 = sqrt(fabs(2.0 * G * y / A));
  1089. rz1 = sqrt(fabs(2.0 * G * y / H));
  1090. /* Get radii for upper y value. */
  1091. y = ClipMax[Y];
  1092. rx2 = sqrt(fabs(2.0 * G * y / A));
  1093. rz2 = sqrt(fabs(2.0 * G * y / H));
  1094. rx = max(rx1, rx2);
  1095. rz = max(rz1, rz2);
  1096. NewMin[X] = -rx;
  1097. NewMin[Z] = -rz;
  1098. NewMax[X] = rx;
  1099. NewMax[Z] = rz;
  1100. }
  1101. /*
  1102. *
  1103. * Check for paraboloid (z-axis).
  1104. *
  1105. * x*x y*y
  1106. * z - ----- - ----- = 0
  1107. * a*a b*b
  1108. *
  1109. */
  1110. if ((H == 0.0) && (I != 0.0) && (A != 0.0) && (E != 0.0) && (J == 0.0))
  1111. {
  1112. /* Get radii for lower z-value. */
  1113. z = ClipMin[Z];
  1114. rx1 = sqrt(fabs(2.0 * I * z / A));
  1115. ry1 = sqrt(fabs(2.0 * I * z / E));
  1116. /* Get radii for upper z value. */
  1117. z = ClipMax[Z];
  1118. rx2 = sqrt(fabs(2.0 * I * z / A));
  1119. ry2 = sqrt(fabs(2.0 * I * z / E));
  1120. rx = max(rx1, rx2);
  1121. ry = max(ry1, ry2);
  1122. NewMin[X] = -rx;
  1123. NewMin[Y] = -ry;
  1124. NewMax[X] = rx;
  1125. NewMax[Y] = ry;
  1126. }
  1127. /* Intersect clipping object's and quadric's bounding boxes */
  1128. NewMin[X] = max(NewMin[X], ClipMin[X]);
  1129. NewMin[Y] = max(NewMin[Y], ClipMin[Y]);
  1130. NewMin[Z] = max(NewMin[Z], ClipMin[Z]);
  1131. NewMax[X] = min(NewMax[X], ClipMax[X]);
  1132. NewMax[Y] = min(NewMax[Y], ClipMax[Y]);
  1133. NewMax[Z] = min(NewMax[Z], ClipMax[Z]);
  1134. /* Use old or new bounding box? */
  1135. New_Volume = (NewMax[X] - NewMin[X]) * (NewMax[Y] - NewMin[Y]) * (NewMax[Z] - NewMin[Z]);
  1136. BOUNDS_VOLUME(Old_Volume, Old);
  1137. if (New_Volume < Old_Volume)
  1138. {
  1139. /* Add translation. */
  1140. VAddEq(NewMin, T1);
  1141. VAddEq(NewMax, T1);
  1142. Make_BBox_from_min_max(Quadric->BBox, NewMin, NewMax);
  1143. /* Beware of bounding boxes to large. */
  1144. if ((Quadric->BBox.Lengths[X] > CRITICAL_LENGTH) ||
  1145. (Quadric->BBox.Lengths[Y] > CRITICAL_LENGTH) ||
  1146. (Quadric->BBox.Lengths[Z] > CRITICAL_LENGTH))
  1147. {
  1148. Make_BBox(Quadric->BBox, -BOUND_HUGE/2, -BOUND_HUGE/2, -BOUND_HUGE/2,
  1149. BOUND_HUGE, BOUND_HUGE, BOUND_HUGE);
  1150. }
  1151. }
  1152. }
  1153. /*****************************************************************************
  1154. *
  1155. * FUNCTION
  1156. *
  1157. * Compute_Plane_Min_Max
  1158. *
  1159. * INPUT
  1160. *
  1161. * Plane - Plane
  1162. * Min, Max - Vectors containing plane's dimensions
  1163. *
  1164. * OUTPUT
  1165. *
  1166. * Min, Max
  1167. *
  1168. * RETURNS
  1169. *
  1170. * AUTHOR
  1171. *
  1172. * Dieter Bayer
  1173. *
  1174. * DESCRIPTION
  1175. *
  1176. * Compute min/max vectors for planes perpendicular to an axis.
  1177. *
  1178. * CHANGES
  1179. *
  1180. * May 1994 : Creation.
  1181. *
  1182. ******************************************************************************/
  1183. void Compute_Plane_Min_Max(PLANE *Plane, VECTOR Min, VECTOR Max)
  1184. {
  1185. DBL d;
  1186. VECTOR P, N;
  1187. if (Plane->Trans == NULL)
  1188. {
  1189. Assign_Vector(N, Plane->Normal_Vector);
  1190. d = -Plane->Distance;
  1191. }
  1192. else
  1193. {
  1194. MInvTransNormal(N, Plane->Normal_Vector, Plane->Trans);
  1195. MInvTransPoint(P, N, Plane->Trans);
  1196. d = -Plane->Distance - P[X] * N[X] - P[Y] * N[Y] - P[Z] * N[Z] + 1.0;
  1197. }
  1198. Min[X] = Min[Y] = Min[Z] = -BOUND_HUGE/2;
  1199. Max[X] = Max[Y] = Max[Z] = BOUND_HUGE/2;
  1200. /* y-z-plane */
  1201. if (fabs(1.0 - fabs(N[X])) < EPSILON)
  1202. {
  1203. if (N[X] > 0.0)
  1204. {
  1205. Max[X] = d;
  1206. }
  1207. else
  1208. {
  1209. Min[X] = -d;
  1210. }
  1211. }
  1212. /* x-z-plane */
  1213. if (fabs(1.0 - fabs(N[Y])) < EPSILON)
  1214. {
  1215. if (N[Y] > 0.0)
  1216. {
  1217. Max[Y] = d;
  1218. }
  1219. else
  1220. {
  1221. Min[Y] = -d;
  1222. }
  1223. }
  1224. /* x-y-plane */
  1225. if (fabs(1.0 - fabs(N[Z])) < EPSILON)
  1226. {
  1227. if (N[Z] > 0.0)
  1228. {
  1229. Max[Z] = d;
  1230. }
  1231. else
  1232. {
  1233. Min[Z] = -d;
  1234. }
  1235. }
  1236. }